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ABSTRACT

A study of the PHALANX CLOSE-IN WEAPON SYSTEM’s (CIWS) Mk149
round and the M61A1 Gatling gun focused on modeling the various design factors
that influence projectile trajectory and accuracy.

The PHALANX currently experiences random and variable dispersion values
which can diminish the PHALANX ability to destroy incoming targets. The focus of
the analysis was on determining and understanding the dynamical modes of

oscillation and forced response dynamics.

A model of the PHALANX M61A1 Gatling gun was developed in great detail
and its normal modes of vibration and natural frequencies were computed.
Because dynamic response is comprised of modal responses, it is critical that the
modes of the gun are understood. Various excitation forces were applied,
simulating a range of firing bursts, and displacements of the firing barrel were
recorded in all translational directions.

Animation of the ncrmal modes of vibration indicate that PHALANX' six-
barrel system plays a significant role in the lower order normal modes, and
possibly the most significant contribution to dispersion. Also, results of the
dynamic response reveal barrel tip displacements, that are consistent with well

documented dispersion values.

The FEM provides a timely method to evaluate proposed design modifications

and subsequent analysis. This model will be valuable as part of the Optimized
Barrel Design project currently underway.
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I. INTRODUCTION

Ship air defense against supersonic anti-ship missiles (ASMs) is based on a
defense in depth concept. The outer defense is provided by shipboard long and
medium range missiles, followed by 5"/54 caliber guns, short range SEA
SPARROW missiles, and ultimately the VULCAN PHALANX close in weapon
system (CIWS ). As the last line of defense, PHALANX will automatically engage
and destroy ASMs that penetrate a ship’s primary defense envelope at a range
where ballistic missile fragments will not damage the ship. It also provides ASM

defense for ships operating in other than defense-in-depth scenarios.

CIWS is a quick reaction, closed-loop spotting fire control weapon system
designed to defend against "leaks" in a ship’s outer air defense. It is designed to
destroy targets at a range far enough from the ship to prevent the subsequent
missile fragments from continuing on and inflicting significant collateral damage to
the ship. It must also mesh well with the other defensive weapon systems to
provide sufficient overlap, but not to engage while the longer range systems can
still be effective. PHALANX was developed by the former GENERAL DYNAMICS
Co., Pomona Division, starting in the mid 1960’s, and entered service in the early
1970’s. Today, typically two PHALANX mounts can be found on nearly every U.S.
Navy ship including the auxiliary and support vessels. PHALANX can also be
found on warships of many foreign navies including Japan’s newest AEGIS
destroyer. It has become the benchmark of ship self-defense weapons. The
weapon system is shown in Figure 1.1 and the MK 149 20 mm round is shown in
Figure 1.2. (Ref. 1)

The heart of the PHALANX is the versatile M61A1 Gatling gun, providing a
high rate of fire ( selectable 4500 or 3000 shots per minute SPM ) with a
specifically designed high kinetic energy round, in order to provide the necessary
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Figure 1.2. MK 149 PHALANX round.
lethality. The high kinetic energy round weighs approximately 0.70 kg and has a
muzzle velocity of 1200 m/s which allows for flat trajectories, simplifying the fire
control problem. (Ref. 2)




The fire control uses closed-loop spotting in that the system’s radar tracks
both outgoing rounds and the incoming target. The relatively flat trajectory
reduces the complexity of tracking the outgoing rounds. The basic fire control
.algorithm uses information from spotting of the outgoing rounds and the incoming
target, in order to correct the difference between the two, and ultimately achieve
missile destruction. It is important to distinguish that the closed loop spotting data
is of the outgoing round before it reaches the target area. This saves valuable
time. A typical open loop fire control, assesses corrections to outgoing rounds only
after observing that the outgoing round has hit or missed. The closed loop spotting
system and the high firing rate are the cornerstone of PHALANX’ quick reaction.
(Ref. 3)

The Phalanx (CIWS) consists of a pair of radar antennae for search and track
sharing a common transmitter. They are mounted on top of the housing for the
M61A1 20 MM Gatling gun with a 1500 round magazine drum below. The entire
assembly moves as a unit, engaging diving as well as sea skimming missiles.
There is also an anti-surface mode to defend against small patrol craft at close
range. The system is designed to track and engage incoming air targets
automatically. However, the surface mode currently requires human intervention

via optical sensors to point the gun at small surface targets.(Ref. 4)

A. DISPERSION

All gun / ammunition systems have a dispersion figure. In fact, the large
number of bullets delivered by PHALANX coupled with their dispersion create a
"wall of bullets” that many propose is the crux of PHALANX’ effectiveness. It is
proposed that the overall dispersion of PHALANX should not exceed 1 milliradian.
(Ref. 5)




If a number of rounds are fired from a weapon against a target, there will be
a dispersion in both the vertical and lateral directions. For smaller caliber
ammunition, like the 20 mm MK 149 round, the lateral and vertical displacements
tend to be equal. The resulting symmetric distribution can closely resemble a
" Gaussian distribution. Figure 3 illustrates the concept of radial dispersion showing
the cone angle through which a given percentage of rounds pass.

+\\Q

1.2 mr

39% of rounds in burst pass thru this circle
Figure 1.3. Radial dispersion.

Typically, dispersion is measured in terms of the standard deviation of a Gaussian
distribution. The dispersion value is quoted for 1 o , about 39%. The Gaussian
distribution is an appropriate approximation for the actual distribution, since

dispersion is caused by many small random errors.

However, Figure 1.4 indicates that the dispersion pattern of the PHALANX
can be something other than Gaussian. Figure 1.4 is a comparison of one example
of dispersion data, taken by HUGHES MISSILE at 3000 SPM, to a Gaussian
distribution. (Ref. 6)

When a gun is manufactured, it will be tested for accuracy and dispersion against
a test specification. The resulting dispersion value varies and tends to increase by
about 50 percent when a gun is fired in bursts as compared to single shot. Also, as .
a gun wears during its life, the dispersion will increase by up to 20 percent before
refurbishment is considered necessary (Ref. 7). For the PHALANX the quoted
dispersion value is 1.4 mradian at one standard deviation (Ref. 8).
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Figure 1.4. Comparison of dispersion data to a Gaussian distribution.
As mentioned earlier, the advances in technology have improved the measurement
of dispersion. Figure 1.5 shows the typical arrangement for a dispersion firing.
The OEHLER AAS is an acoustic measuring device that has four microphones at
the corners of a frame. As the rounds pass through this frame, the time difference
between the acoustic signal arriving at the four individual microphones determines
the position the round. In addition, there is a batten board placed behind the
OEHLER system to provided a "hardcopy” of the dispersion pattern. (Ref. 9)

B. PROBLEM DEFINITION
Currently, the M61A1 Gatling gun mounted in PHALANX exhibits

inconsistent dispersion performance. This dispersion was not measured accurately
until the advent of an Accurate Automated Spotting System developed by the
OEHLER Company. PHALANX dispersion measurements conducted at HUGHES
MISSILE show that the six-barrel system gives a dispersion pattern greater than
that of a single barrel fired separately. Bursts of 100, 150, 250, and 375 shots with
firing rates of 3000 and 4500 SPM are used during dispersion firings. Dispersion
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Figure 1.5. Dispersion firing test set up.
firings show individual barrels having their own Mean Point of Impact (MPI), with
the six MPI's forming a polygon. Figure 1.6 illustrates a specific example. The
individual MPI's are identified by circles with the respective barrel number in the
center. The shaded image in the center represents the target's aspect at 1000 feet
with a 200 foot off range. Dispersion in both elevation and azimuth are indicated,
and both are measured in mradians. The six-barrel group, over a number of short
bursts, can produce mean dispersion up to 2 mradians, with typical values ranging
between 1 and 2 mradians. The dispersion from a single barrel is only about 1

mradian.

This dispersion leaves a deficiency in a ship’s defensive posture. This random
and variable dispersion can diminish the gun’s ability to hit missiles at its
maximum range, since a 2 mrad dispersion results in a 4 meter spread at 2000
meters. Dispersion values documented over the course of several years shows
dispersion values from 0.9 mradians to as high as 2 mradians. The dynamic
oscillation of the six-barrel system are considered important to understanding the
dispersion problem. A 3 mm deflection at the barrel tip results in an angular

6
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Figure 1.6. Dispersion Pattern.
dispersion of approximately 2 mradians. Hughes Missile has designed and
implemented three different muzzle restraints, in order to restrict motion of the
end of the six-barrel group. The restraint has been successful in eliminating the
largest dispersion values, however significant dispersion values still occur.(Ref. 10)

Due to the complexity of the PHALANX weapon system, there are several
sources contributing to the overall dispersion of the system. First of all, there are
gun / barrel alignment and vibration problems, yaw of the rounds exiting the barrel
upon firing and errors in the control systems. All of these sources taken
individually are random and difficult to quantify. Attempting to understand the
effects of their combined input is a tremendous task. The goal of this analysis is to
understand the role of mechanical oscillations of the six-barrel system in the
dispersion of the PHALANX system. In developing the gun model, all parts were
considered to be perfect with zero tolerances. Also, there is no consideration for

ammunition or control system errors.




C. SCOPE OF THE RESEARCH

In order to fully understand the physics behind the dispersion of the
PHALANX M61A1 Gatling gun, a finite element model of the entire gun and its
associated mountings was developed. The finite element model provides the
capability to solve for and animate the natural modes of oscillation. The model can
analyze PHALANX design modifications and can be used for in-depth forced
response analysis. The development of the model and the design decisions,
supporting theory, and calculations are the scope of this thesis. A brief discussion
on dispersion, how it is measured, and a discussion for the motivation to pursue

this research follows in the introduction.

D. MOTIVATION

Motivation for the research was provided by Prof. W. B. Colson’s PH4911
computer simulation class at the Naval Postgraduate School. One of the assigned
projects was an air drag modeling problem, describing bullet trajectories and
fragments from a missile destroyed by the VULCAN PHALANX.

The C program, describing fragment trajectories, accepts input data on range,
coefficient of drag, characteristic terminal velocity, missile fragment cross-sectional
area, air density, and missile initial velocity as input. A listing of the program is
shown in Appendix A. The output from the program graphically displays three
views of the ballistic missile fragment’s trajectories, and reports the number of
fragments that hit the ship and miss the ship. The program assumes exponential
and Gaussian distributions for various parameters. The missile was designed to
break up into 20 fragments of various sizes, shapes, and masses. The fragments
had various initial velocities distributed as Gaussian with a standard deviation of
10 m/s in each direction. The terminal velocity is given by




w=;;2’—';%, ey

where m is the fragment mass, g is the gravitational acceleration, ¢; is the
coefficient of drag, p is the density of air, and A is the cross-sectional area of the
missile fragment. By distributing the terminal velocities, the randomness of the

size, shape and masses of each fragment was assured.

Figure 1.7 shows three views of the fragments’ trajectories. The side view has
the ship at the extreme right hand side with the missile fragments inbound from
the left hand side. The top view is from a vantage directly above the horizontal
plane of the ship and missile, while the end view is looking outward from the ship
toward the inbound missile fragments, similar to what a radar would "see".

For this particular run, the characteristic terminal velocity is V; = 99m/s ,
the missile’s initial supersonic velocity is v, = 1100m/s, and the range of missile
breakup is R = 600 m away from the ship. A typical fragment has drag coefficient
C; =1, cross-sectional area A = 0.0lm?, mass m =5 kg, with the acceleration of

gravity g = 9.8m/s2, and air density of p = 1kg/m3.




«* Debris Simulation: Part IIXI **
vu=-1000m/s NF=20 C=1 p=l Rr=500m

30[side view end view

x (m) x (m)

30{top view ' y (m)

Number of hits= 18
y (m)
Number of misses= 2
Seed= 30
=30 =98.9949
0 z (m) 500  S¢™o%: n/s

Figure 1.7. Ballistic missile fragment trajectories.
TABLE 1 summarizes the pumber of fragments that hit the ship as a

function of range.
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TABLE 1. MISSILE FRAGMENT SUMMARY
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The trend of the number of hits in TABLE 1 is convincing; anti-ship missiles
must be destroyed at PHALANX' maximum range, in order to prevent significant
collateral damage. Therefore, the sources of PHALANX' dispersion must be under-
stood and corrected.
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II. BACKGROUND

A. FINITE ELEMENT THEORY

In order to investigate the mechanical dynamics behind the dispersion of
PHALANYX, it was decided that a Finite Element Analysis (FEA) would be used.
The high rotation rates and excessive temperatures associated with an operating
PHALANX preciude the use of conventional hardware testing. A finite element
computer code called I-DEAS ( Integrated Design Engineering Analysis) was select
to develop the PHALANX model. I-DEAS is a complete structural analysis
software package. The package contains modules that allow the drafting, solid
modeling, finite element modeling, dynamic testing, and ultimately manufacturing
of a component. This thesis used the finite element and system dynamic analysis
modules of I-DEAS. Because of the integration of these modules, the development
and subsequent analysis is readily accomplished.

Basically the finite element method (FEM) is a numerical method for
obtaining approximate solutions to partial differential equations which predict
displacements and the effects of stress on a structure. The process of modeling
calls for the discretization of a continuous structure into a mesh of small elements.
Each element has a simple geometric shape and information to formulate the
governing equations in the form of a mass and stiffness matrices. The elements
represent a type of structural behavior, i.e. beam, shell, or plate. The unknown
generalized coordinates for each element are their associated nodal displacements.
An equation of motion can be defined for each respective element. A specific
solution to each element is defined in terms of the individual nodal displacements.
Scaling the general solution of this equation to include all elements of the structure
results in a set of equations that can be solved for all unknown nodal

12




displacements. Subdividing the physical structure and combining the separate

equations for each element provides a solution to the whole physical system.

The art of finite element modeling (FEM) is to choose the correct type and
number of elements to have the model solution converge on the correct values
without using an excessively large number of elements or nodes. The experienced

‘FEM engineer uses sound engineering judgement in developing a model.

The finite element (FE) engineer must ensure the proper element type and

density are chosen to accurately model the true structure’s behavior.

Nodes are defined in space with three coordinate values at locations
determined by the FE engineer. They are the interconnecting points of elements
and define the "boundaries” of individual elements. Nodes are discretized
according to six physical degrees of freedom (DOF). Each node may have up to six
DOF ( translations in x, y, z, and their respective rotations). The DOF’s of a node
are determined by the type of the element. The total number of physical DOFs is
simply determined by the summation of each node’s DOFs. The DOF of a model
are important for the following reasons: 1) the number of physical DOFs
determines the maximum number of modes of vibration, and 2) It determines the
number of equations of motion that the finite element method must formulate.
There is one equation for each DOF. A FE engineer attempts to operate within a
DOF budget, but ensuring that the behavior of the structure is modeled properly.
He must keep the size of the problem within realistic limits for the FEM’s
algorithm. For displacement based finite element formulation, the error introduced
into the formulation monotonically decreases with an increasing number of

elements.
Boundary conditions and forces are also applied to nodes, and the formulation
of the finite elements are based on nodal displacement values. In the gun model,

nodal displacements are restricted to be linear and elastic. This classifies the
overall analysis to be linear.

13




The linear restriction is justified. Preliminary calculations show that
dispersion values of 1-2 mrad requires barrel tip displacement to be approximately
3 mm. A force versus deflection curve is shown in Figure 2.1. It shows that within
the region of interest, 0 to 3 mm deflection, the force has linear behavior. The
curve in Figure 2.1 was developed by loading the six-barrel system, at the barrel
- tips, and measuring the deflection along the length of the barrel cluster. The load
was applied using a hydraulic ram under the muzzle tip of the six-barrel system.
Data was taken for both the loading and unloading of the six-barrel system,
demonstrating a hysteresis effect. Figure 2.1 shows two curves, a solid line and a
dashed line. this was done to demonstrate the reproducibility of the results. Only
the "upper" portion of the hysteresis loop is linear. This represents the loaded

condition.

The overall behavior of the curve, through 300 pounds-force and about 8 mm
deflection, is non-linear. But in the lower section of the curve, 0 - 50 pounds-force
and 3 mm deflection, the curve is approximately linear. Since a displacement of
0.3 inches at the barrel tip results in about 2 mradians of dispersion. Therefore,
the linear elastic assumption is taken to be valid.

A finite element is formulated from an assumed form of the internal strain
equation for each element. The user defines physical and material properties of
each element. The physical properties describe the elements thickness in the case
of thin shell elements, or the beam croes-section for beam elements. The material
properties are found in a metals handbook for a specific material type. In addition,
the material is categorized as isotropic, orthotropic, or anisotropic. All elements in
the gun model were isotropic.

There is an individual equation of motion for each physical DOF for each
node. The gun model has 22,500 physical DOF. Therefore, the FEM involves the
solution of 22,500 equations. In order to simplify the manipulation of these
equations, the algorithm writes them in matrix form. With the relative nodal
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Figure 2.1. Deflection versus load curves for M61A1 Gatling gun (Ref. 11).
displacements as the unknowns, the applied loading and boundary conditions are
translated into specific nodal values. Applying the nodal boundary conditions and
forces, equation (2) relates the forces to the displacements through the stiffness

matrix [K] .
{F} - (€] {x}. @

For each individual element, there is an assumed solution to its governing
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equation. The error incurred is a function of the element density and can be
reduced by increasing the element density. Increasing the number of individual
elements results in a monotonic convergence of the solution to the actual solution.
A second source of error arises from numerically solving the governing equations.
Ideally the finer the grid of elements, then the more accurate the model. However,
a finer grid increases the size of the resulting stiffness matrices, creating CPU
limitations. These tradeoffs must be considered in order to efficiently converge to a
correct solution. (Ref. 12)

It is not important to build an exact geometric replica of the gun. It is the
structure’s mechanical behavior that is crucial. The FE engineer selects elements
that represent the elastic and kinematic behavior of the structure and its

associated mounting mechanisms.

B. ELEMENTS

1. Description

There are two broad categories of elements: structural and continuum.
The structural elements in the gun model are beams and shells. The governing
equations for these elements are derived directly from their respective beam and
plate theories. Continuum elements are three dimensional solid elements. Their
governing equations are derived directly from the theory of elasticity.

IDEAS has a library of element types from which to choose. These
elements are categorized by family, order, and topology. The element family refers
to the characteristics of geometry and the type of displacement that the element
models. For further information on the element families and their formulations,

consult the IDEAS MODEL SOLUTION and OPTIMIZATION manual.

The order of an element refers to the order of the shape equation used to
interpolate strain between nodes. Specifically the equations can be linear,
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parabolic, or cubic. Linear elements have two nodes along each edge, parabolic
have three nodes and cubic four.

Topology is another classification of the elements. It refers to the overall
shape of the elements; whether it is triangular or quadrilateral. In general, it is
better to choose quadrilateral over triangular shapes, because the former has more
degrees of freedom and will more accurately predict the true displacement.
However, the geometry of the model often requires the use of triangular
topology.(Ref. 13)

2. Beam Elements

Beams are elements whose length is much greater than its transverse
dimension. A Beam can be modeled using individual elements of varying cross-
sections along its length, and was important in the modeling of the gun barrels. It
took approximately 3000 elements to model the barrels using solid elements. In
order to simplify the problem and to maintain an acceptable number of DOF, the
model used individual beam elements with a tubular cross-section of varying
dimensions that mimic the inertial properties of the actual barrel along its length.
IDEAS provides the user with a variety of standard cross-sectional shapes that
can be customized with specific dimensions. For a tubular cross-section, the
computer requires that an inner diameter and wall thickness be specified. With
these two inputs IDEAS generates the cross-section, displays it for user approval,
and stores it for potential future use.

The properties of the beam elements are 1) the cross-section is constant
along the length of the individual element 2) the cross-section dimensions are small
compared to the element length, and 3) the stress and strain vary linearly across
the section depth. The finite element method simplifies calculations associated
with a three dimensional beam of varying cross-section and varying orientations in

space.
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3. Thin Shell Elements

In a thin shell element, the lateral dimension is about the same size as
its length, and both are large compared to the element thickness. Shells support
loads in the same way as plates with the addition of a substantial in-plane
support. The governing equations of shells are comparable to a three dimensional
elasticity problem. The central idea of shell theory is that the shell thickness is so
small that the load carrying capability due to shell bending is small. Therefore,
only the displacement at the midsurface of the shell is of any significance. In order
to compensate for this, the displacement at any point is a combination of the
midsurface displacement and local nodal rotations. In the case of shells, nodes
have three translational DOF and two rotational DOF in the plane tangent to the
surface. Rotation in the plane of the shell is not allowed.

4, Solid Elements

Three dimensional solids elements describe all conceivable orientations in
three space. The use in this thesis was limited to solid bricks and solid wedges.
As implied by their respective names, the shapes in two dimensions are those of a
rectangle and triangle, respectively. For a solid brick the minimum number of
nodes is eight. For the wedge, it is six. In the formulation of these elements, the
theory of elasticity provides the governing equations comprised of twelve
independent partial-differential equations and six stress - strain relations. Solid
elements are not appropriate for bending behavior, unless a large number of

elements are used.

5. Node to Node Translational Springs

The node to node translational spring is an element that models a linear
elastic spring between two nodes. These springs can be assigned a specific

translational stiffness value in the three respective translational directions x, y,
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and z. These represent the force required to separate the two nodes a unit

distance in each respective direction. The units are force per unit distance.

6. Rigid Elements

Rigid elements restrict the motion of the nodes of an element. The nodes
are related to each other as if they were connected by rigid mass less beams. A
single rigid element can be defined by anywhere from two to 32 nodes, and all
nodes have all six degrees of freedom. A unique feature of the rigid element is its
end release code. The end release code is simply a series of six integer values
(123456) corresponding to the six physical degrees of freedom, x translational
through z rotational, respectively. These identify the degrees of freedom that are
to be omitted from the rigid constraint, and apply to all nodes in the element
except the first. This allows the simulation of different boundary conditions such
as hinges or ball-socket joints. It is recommended that a simple model be built, in
order to understand of the consequences of varying the end release code prior to
applying it for a specific model application. The default value is 0. That is, no
physical degrees of freedom are omitted. All applications of rigid elements in the
gun used the default end release code. During analysis rigid elements are
processed using a degree of freedom elimination method. The formulation is in the
form of a multi-point constraint (MPC) equation. The MPC equation is a linear
algebraic expression whose variables represent nodal displacement DOF. An MPC
equation consists of nodal DOF, u;, constant coefficients ( real numbers), A;, and a
constant which represents the right hand side of the equation. The right hand side

must be zero for normal modes of vibration. An example MPC follows:

Ajuy+Agus+Agzuz=0 (Ref. 14).
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C. EXAMPLE

To provide a better understanding of the formulation of a finite element, a
simple two degree of freedom example is provided. A rod, shown in Figure 2.2,
represents a continuously distributed mass of length L, mass density y (mass /
length), and stiffness proportional to the product E A, where E is Young’s
modulus and A is the cross-sectional area.

i dm [ ]
! IC !
x=0 x=1L
Figure 2.2. Continuously distributed mass element.

The approach will be to discretize the response of the rod in terms of its end-
point values, or boundary conditions. In order to determine the displacement, use
a function of location x and time ¢, u=u(x,t), along the rods length. The end-point

values are 4, and u, defined as
u,=u0z). (3)

ug=u(L,;t). 4)

Shape functions will be used to relate the response of the rod anywhere along
its length to the end point coordinates. The shape functions a;(x) and oayx) are

linear, so that the following restrictions apply:
0.1(0) =1 GQ(O) =0.
oL)=0. aglL)=1.

Figures 2.3 and 2.4 are the resulting graphs showing the shape functions
oy(x) and agx) respectively.

The resulting shape functions have the analytical form of
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Figures 2.3 and 2.4. Shape functions.

a,(x)=1-% . (5)

=X
az(x)-—L . (6)

The resulting displacement function for the rod is then

uxt)=oay(x)uyt)+oxx)uyt) , )]
or
uG) =) oge) {';;g;} . (®)

The results of the two shape functions allow any response of the rod element
to be described using linear combinations of the shape functions a;(x) and as(x) .
The problem has been discretized with the variable ¢ defined in (9).

)

For deformations of a rod that do not have a linear shape, a second bending
mode is shown in Figure 2.5.
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Figure 2.5. Deformed rod.
The response can be best approximated by dividing the rod up into several small
segments so that the linear combination of each of these smaller elements can
exactly represent this response. The higher the element density, the more exact is
the solution. This illustrates the importance of the FE engineer’s decisions, with
regards to element density and its effect on the solution.

The equations of motion for the rod can be determined using Lagrange’s
method. It is a simple method to integrate the resulting kinetic energy, T, and
strain energy, V, for each individual element over the length of the rod in (10) and
(11). These equations can be substituted into Lagrange’s equation, and solved for

the equations .of motion,

2
x
T f;[u(x,:)] dr | (10)
2
_EA Su(x,t)
cep g ual o

Differentiating (7) with respect to time gives
U =ay(x)u )+ aylxduqlt). (12)

Differentiating (7) with respect to x, and defining a’ (x) as the differential of
ofx ) with respect to x, gives

i‘u—gﬁ=a'1(x)u1(t)+a’z(x)uz(t) . (13)

Substituting (12) into (10) and (13) into (11) results in
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T=-g- r [al(x)ul(t)-o-ag(x)ug(t)] dx ,and (14)

== I: [t:z'l(:::)ul(t)+m'o‘»(x)uz(t)]2 dx . (15)

Define Lagrange’s function L ,as

L=T-V. (16)
Using Lagrange’s method,
d | &L
™ . -%. =4 (17)
153 |-i-e
and (16), the equations of motion can be derived. In (17) i=1,2, - -:,n, wheren

is the number of degrees of freedom and @; , non-conservative work, is equal to

Zero.

In order to evaluate (17), we need

Ei% =88,TT1 =Y f: [al(x)dl(t)+a2(x)d2(t)] a,(x) dx , (18)
::2 =8u—2-7 IL [a1(x)u1(t)+a2(x)u2(t)] ag(x) dx (19)

and
3% = E‘i = f [a’l(x ) ug(t) + a'ale) uglt )] ayx) dr ,  (20)
%:5—‘; EA f; [a'l(x)ul(t)+a'2(x)uz(t)J afx) dr . (@D

Define the mass and stiffness matrices as

m;; = yj: o;(x) aj(x) dx ,and (22)

k,‘j =E A Iza’,-(x) a’j(x)dx . (23)
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Collecting (18) to (23) into (17) results in Lagrange’s equations of motion
which can be recognized as Newton’s Second Law

[ )] {:2} ={F} . 24)
[k,. ,-] {ﬁ;} ={F} . (25)

As an example of the global stiffness and mass matrices, consider a simple

case with four nodes defined along the rod’s length. From Figure 2.6, it can be seen

and Hooke's Law

that node 2 has a stiffness contribution from element 1 and element 2.

|

lj [ ] 2 L J L 3 L 4 L L ] . 8

Figure 2.6. Rod with nodal points defined.

The assemblage of the global stiffness matrix, [K], results in the computation
of each component in the matrix. In many cases, a component is comprised of the
combinations of several individual element stiffness contributions The following
illustrates an example (note that the subscripts on the global stiffness matrix
components refer to the individual stiffness matrices of the finite elements)

i o =%
for node 2, H :[ ) []

ng = kzzl +k nz . 27)
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This can also be extrapolated for other nodes that have several stiffnesses

associated with them.

The resulting general equation of motion is

[M] {x} + [K] {x} =0. (28)

From this global equation of motion stress analysis, linear static analysis, and
normal mode dynamics can be solved to find the normal modes. The next chapter
will describe the details of the gun model’s development, and the solution of the

eigenvalue problem of the normal modes.
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III. MODEL DEVELOPMENT

A. INTRODUCTION

IDEAS is the cornerstone of parallel engineering, incorporating design,
analysis, and manufacturing. Parallel engineering provides a project manager with
early review of design alternatives and potential shortcomings. However, at the
inception of the PHALANX project in the late 50’s, finite element modeling (FEM)
was no where near its current level of understanding and wide-spread use.
Although FEM has been understood theoretically for many years, it was the
technological advances in computer hardware that has expanded the horizons for
FEM, allowing FEM to be performed with a desk top workstation. This new
technology is being applied for the first time to investigate the performance of the
PHALANX weapon system.

The layout of the model began with a site visit to the PHALANX gun at
HUGHES MISSILE in Pomona, CA. Gun drawings and blueprints were studied to
extract dimensions and the material types of individual components. Decisions
were made as to which components of the gun would be critical in the ultimate
dynamic analysis of the model.

Initially, the model was intended to focus on the six-barrels and clamps.
However, on the advice of an outside consultant the double angular contact
bearing, needle bearing and their support structure were included in the model. In
addition to the bearings, the gun's mounting assemblies were critical to
understanding the model dynamics. (Ref. 15)

With a budget of approximately 20,000 Degrees of Freedom (DOF), a model
was developed in a logical fashion, much the same way the gun is built on an

assembly line. Individual components were "built", quality checks performed, and
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then a solution of their individual normal modes was found. Decisions were made
as to which element types and element densities would best model the behavior of

individual components.

This chapter discusses the functional description of the significant
components of the M61A1 Gatling gun, followed by a discussion of the building of
the model’s components, the grouping of elements, model quality checks, boundary
conditions, and finally the model solution. The development of the finite element
(FE) model is the first step to solving for the normal modes and natural

frequencies.

Mode shapes and natural frequencies are used to identify the excitation
frequencies that may produce undesirably large structural responses. The
response of the structure can be approximately represented, in many cases, by the
lower frequency mode shapes. This allows the formation of modal components for
future dynamic response analysis.

B. NODE CREATION

Nodes were created manually by keying in their coordinates, and by copying
or reflecting existing nodes. Nodes are specified by their coordinates in an existing
global coordinate system determined by the user. For the gun model, the
coordinate system is predefined as global Cartesian. There is also the option to use
a cylindrical or sphencal coordinate system. A Computer Aided Design (CAD) of
the entire gun was developed. The drawing was the result of information from the
sight visit, technical manuals and blueprints. From the drawing, individual points
were assigned to outline the various components. The coordinates of these points
were keyed in as individual node coordinates. The model has 3750 nodes. The
node points that were entered created a two dimensional model. The third
dimension was generated by reflecting and copying the existing nodes.
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C. ELEMENT CREATION

The manual method involves using the screen cursor to select nodes that
define an individual element. For example, a solid linear brick was created by
selecting 8 nodes in the proper sequence to form a single element. The building of
all components could take advantage of the gun model's symmetry by creating a
sector of a component, and then copying and rotating these elements to generate
the remainder of the component. This results in fewer nodal coordinates having to
be entered manually, and is an efficient way to build the model.

1. Element Attributes

Elements are described by a label, type, listing of nodes that form the
element, display color, and the material and physical property table identification
codes. These attributes can be modified after the element is created, with the
exception of changing the element to a type described by a differing number of
nodes. In conjunction with the creation of an element is the creation of its physical
and material properties. In all cases the material properties were chosen to be
isotropic steel. Physical property tables were tailored specifically to the individual
elements, that is, a beam element’s cross-section definition or a translational

spring’s stiffness value.

2. Element Compatibility

The gun model is made of several different element types. Therefore it is
important to discuss element compatibility. The term compatibility applies
specifically to the degrees of freedom (DOF) of the nodes of a respective element.
Recall, the nodes of a beam element have six DOF, while the nodes of a solid linear
brick have only three translational DOF. In order to ensure proper element
behavior, nodes that are interconnecting between differing element types must be
treated properly. In this case the incompatibility, 3 DOF versus 6 DOF, can be
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overcome by constraint equations. The three rotational DOF of the beam must be
constrained to the rotation of the edge of the brick element. This serves to force
the beam’s rotational DOF to be equal. The brick element’s translational DOF
normal to the edge would lie in the plane of the beam's rotated cross-section.

D. FUNCTIONAL DESCRIPTION

A brief functional description of the major components of the M61A1 will
provide insight into the decisions made in the modeling of the individual
components. Figure 3.1 is an assembly drawing of the M61A1 gun, and will be
useful to visualize the interfacing of individual components. (Ref. 16)

Figure 3.1. A: embly drawing of the M61A1.
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1. Barrels

The gun incorporates six rifled barrels which are supported by a stub
rotor enclosed in a bearing housing attached to the rotor assembly. Interrupted
locking lugs on each barrel mate with similar interrupted locking lugs in the rotor
body to secure the barrels. Knurled bands near the center of the barrels provide a
convenient surface for handling the barrels during removal and installation. The
barrels are designed to have a 0.8 degree inward cant.

2. Muzzle Clamp

The muzzle clamp assembly is positioned at the outer ends of the barrels.
It sets the barrels’ alignment and restricts barrel movement, thereby setting and
maintaining projectile dispersion. The muzzle'clamp assembly also aids the mid-
barrel clamp in restraining individual barrel movement during firing. A self-
locking nut assembly secures the muzzle clamp to the barrels.

3. Mid-barrel Clamp
The mid-barrel clamp is positioned near the center of the barrels, with
the clamp tabs engaged in slots machined into the mid-point of the barrels. The
clamp positions the six barrels for positive locking in the rotor assembly breech
locking lugs and physically locks the six barrels together. This restrains individual

barrel movement during firing.

4. Housing Assembly

The housing assembly is the primary unit of the gun and consists of an
upper and lower section which are bolted and wire locked together. The housing
and associated parts function to guide the breech through its correct fore and aft

travel. The housing assembly consists of several components listed below.
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a. Recoil Adapters

Recoil adapters reduce the amount of recoil and counter-recoil forces
transmitted to the supporting structure when the gun is fired. There are two recoil
mountings forward which are designed to transmit the recoil energy from the
rounds being fired to "ground”. The recoil adapters make up two of the gun’s three

point mounting system.

b. Ball Joint

The ball joint is the third mount. It supports the back of the gun,
allowing the gun to translate axially with each round fired. A ball joint allows
translation in the x direction and a limited range of rotations in all directions. The
cup of the ball joint is an integrated part of the housing assembly cover plate. It is
located on the gun’s vertical center line 6.19 cm below the gun’s horizontal center
line. The cup is 4.3 cm deep, therefore it allows translation without the mount
slamming into the housing assembly during firing.

c. Rotor

The rotor assembly is the major unit of the gun. It is hydraulically
driven at a two speeds. At a firing rate of 3000 shots per minute (SPM), it rotates
at 500 revolutions per minute (RPM) (8.3 Hz). At 4500 SPM, it rotates at 750 RPM
(12.5 Hz). Theoretically, the maximum firing rate is 6000 SPM (100 Hz). The
direction of rotation is counterclockwise, as viewed from the rear of the gun. The
rotcr functions to set the breech bolt assemblies into motion. This causes six basic
actions: feeding, chambering, locking, unlocking, retracting, and ejecting of the MK
149 round.

31




d. Angular Contact Bearing and Needle Bearing

Front support of the rotor is provided by a double row angular contact
bearing. Rear support is provided by a needle bearing. The needle bearing rides
on an axle that is an integral part of the housing end-plate. The end-plate is
attached to the aft end of the housing by a coupling clamp.

e. Stub Rotor

The stub rotor supports the breech end of the six barrels and permits
easy alignment of the barrels to the rotor locking lugs. The stub rotor is welded to
the rotor body.

f. Barrel Locking Lugs

Barrel locking lugs mate with the interrupted locking lugs on each barrel
to physically lock the barreld to the rotor assembly.
)

J
E. MODEL COMPONENTS

In modeling the gun, there were necessary assumptions made to capture the
gun in an "operating” condition. The recoil adapters allow translations and the
ball joint allows rotations and translation. Therefore, it is necessary to choose

initial displacement values for the nodes associated with these components.

The gun was modeled in a position consistent with displacements expected for
a gun actually firing. Specifically, the ball joint was positioned at the geometric
center of the cup, about 1.9 cm aft of the gun body. This assumption was based on
the load deflection curve for the recoil adapters as shown in Figure 3.2. It is
reasonable to presume that the design operating point would be in the center of
the hysteresis loop. It is also known that the recoil adapters allow approximately
1.3 cm of gun travel. (Ref. 17)
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Figure 3.2. Load-deflection curve for M61A1 Recoil Adapters.

The gun model components are considered to be "new" with zero tolerance
between them. Because of this assumption, the interconnection of certain
components must be specifically addressed. The barrels’ interrupted locking lugs
are presumed to fit perfectly with those in the rotor. The interfaces between the
barrels and the stub rotor, mid-barrel and muzzle clamps are connected with rigid
elements. These rigid elements are connected from a barrel node, that lies halfway
between the plates of the specific clamp, to six nodes on both the front and back
sides of the respective plates as shown in Figure 3.3. Care was taken not to induce
a moment at the interfaces so that the result is an ideal interface between the
barrels and clamps.

The stiffness values for the bearings were derived for a specific load case. In
order to get stiffness values from the bearing manufacturer, it is necessary to
provide a specific loading of the bearing. The loading included the force of a single
shot, gravity and a torque caused by a fluctuation of the rotor’s rotational speed.

This load condition is presumed to be a worse case. To determine the actual
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Figure 3.3. Barrel clamp interface.
loading of the bearing, the described load was applied to the gun model and
reaction forces were measured at the respective bearing structures. The bearings
were all assumed to be symmetrically loaded. This alleviated variations in
stiffness and contact angle around the bearing’s circumference.

The individual components of the gun were created and assembled, in a
logical fashion, as they might be on an assembly line. The discussion below is a
brief description of the "building" of these components, focusing on the element

types selected for the representation. Figure 3.4 is an assembly drawing of the gun
model.

1. Barrels

Two sets of barrels were created. The first set of barrels was created
using solid linear bricks. A high element density was used, in order to capture the

barrels exact geometric characteristics. However, the resulting barrel was
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Figure 3.5. Single PHALANX barrel. A
comprised of 400 elements. For a single component this was excessive. In order to
stay within the DOF budget, an alternate approach was considered. The barrels
were modeled using beam elements with various tubular cross-sections to represent
the elasticity and structural mechanics of the actual barrel. The cross-section’s
parameters are the inner and outer diameters of the tube. There are 39 beam

elements in a barrel with tubular cross-sections of varying thicknesses. It was
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important to have a sufficient number of beam elements to ensure that the
variations in the cross-sections of the original barrel were represented, and to have
enough nodes to provide smooth mode shapes. For all cross sections of the barrel,
the inner diameter was 2 cm. The outer diameter varied in each beam section
consistent with the barrel’s thickness at the respective length. There were eight
different beam cross-sections representing the various changes in the barrels’
thickness. TABLE 3.1 lists the eight different cross sections used. Figure 3.5
shows a single barrel using a special display option that shrinks the elements to
allow inspection of individual elements. Another display option displays the
tubular cross-section. In reality, a beam element is defined by only two nodes, and
the element is normally displayed as a single line between the respective beam

element’s nodes.

TABLE 3.1. BARREL BEAM CROSS SECTIONS

Cross-Section Description

51 x 1.5
56 x 1.8
40 x 1.0
48 x 14
33 x 0.7
31 x 0.5
34 x 0.7
26 x 03
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Figure 3.6. Stub Rotor.
2. Stub Rotor, Muzzle and Mid-barrel Clamps

The muzzle clamps, mid-barrel clamps, and stub rotor provide rigidity to
the six barrel system. The clamps and the stub rotor themselves are relatively
thick elements. It can be expected that their first flexible modes of vibration will
be bigh. Their role in a dynamic analysis is strictly their mass and inertia
contribution to the six-barrel system stiffness. The components themselves will not
be excited based on the low frequency of the excitation force. The decision was
made to use solid linear brick elements to model the thick sections and linear
quadrilateral thin shell elements to model the webbing between the plates of the
muzzle clamp and stub rotor as shown in Figures 3.6, 3.7, and 3.8. These figures
also have the element shrink switch "on", in order to highlight the difference in
element types.
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Figure 3.7. Muzzle Clamp.

Figure 3.8. Mid-Barrel Clamp.
3. Housing Assembly
The model’s housing assembly was constructed from linear quadrilateral
thin shell elements. A value of 0.5 cm was entered in the physical property table
to represent the thickness of the M61Al’s casing. Figure 3.9 is an isometric view
of the housing assembly. The additional housing assembly components are

discussed below.
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Figure 3.9. Housing Assembly.
a. Recoil Adapters

The recoil adapters were modeled using a variety of elements. The
design emphasis was to properly model the recoil adapter stiffness and the
geometry of its mounting. The stiffness was a simple matter. A node-to-node
translational spring was created between two nodes. One node at a point
representing the mounting point of the recoil adapter to the forward yoke. The
other at an arbitrary point in-line with the gun attachment point. From' this latter
node a rigid element, representing the high stiffness value of the recoil adapter’s
shaft was created. The rigid element connected the node-to-node translational
SPRING to five nodes on the recoil adapter support structure as shown in Figure
3.10. The support structure was created, using solid linear elements and provides

the proper geometry for the line-of-action of the recoil adapters.

The stiffness value for the recoil adapters was calculated by taking the mean value
of the two slopes of the hysteresis loop shown in Figure 3.2. The resulting value
was 5.9 x 10°N/m.
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Figure 3.10. Recoil Adapters.

Figure 3.11. Rotor.

b. R(_)tor

The rotor shown in Figure 3.11 was created with solid linear brick
elements. The rotor will not distort significantly from the low frequency excitation.

However, the rotor does play an important role in providing a boundary condition
for the six barrel system. All six barrels are locked into the rotor. The rotor is

supported by two sets of bearings.
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The bearings play an important role in understanding the behavior of the six-

barrel system. By “eliminating” distortion of the rotor, the effects of the bearings
can be fully realized.

c. Angular Contact Bearing and Needle Bearing

There are two sets of bearings in the gun contained in the housing
assembly. The most important bearing in the gun is the double angular contact
bearing. This bearing transmits the force of the firing rounds to ground via the
recoil adapters. It also provides radial support to the forward portion of the rotor.
The other bearing is a needle bearing located at the after end of the rotor. Its
purpose is to provide radial support to the rotor as shown in Figure 3.12.

Figure 3.12. Double Row Angular Contact Bearing.

The angular contact bearing was modeled in great detail, because of its
importance in the gun dynamics. The bearing’s inner and outer races were
modeled with solid linear brick elements. There are two rows of 18 elements
around the circumference of the bearing. Eighteen elements was sufficient to
maintain the bearing’s round geometry and was a reasonable element density. The

ball bearings were modeled using node-to-node translational springs connecting the
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inner and outer races, representing the bearing’s stiffness. The springs are
oriented to accurately reflect the bearing’s contact angle. The contact angle

represents the line of action of the ball bearings between the inner and outer races.

All bearings have associated stiffness values depending on their loading.
As discussed earlier, the bearing stiffnesses were computed for the gun in an
operating condition and obtained from their respective manufacturers (Ref. 18 and
19).

A computer program was used to translate the actual bearing’s axial and
radial stiffness values provided by the manufacturer. The program iterated these
two inputs to converge on a single stiffness value and contact angle for each of the
36 springs. The result is that the 36 springs represent the equivalent axial and
radial stiffness values of the actual bearing. The actual stiffness value is
41.1 x10° N / m, with a contact angle of 19.62 degrees (Ref. 20).

The needle bearing provides radial support to the after portion of the
rotor. It was modeled with 18 node-to-node translational springs. The springs are
evenly spaced around the circumference of the axle with a 20 degree angular
separation. They are connected between the axle and the inner circumference of
the aft portion of the rotor providing only radial support. Therefore, the springs
are oriented in a vertical plane, with a contact angle of zero. Since, the needle
bearing has no race, there was no attempt to model a needle bearing housing. The

stiffness and support contributions were the important factors to model.

A simple hand calculation was used to translate the manufacturer’s
radial stiffness value to the model. The approach was to use Hooke’s law and sum
the forces around the circumference of the bearing. The variable K is the
manufacturer’s radial stiffness value and x is the displacement so that

18
2 Fi=K«x.

i=]
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From Figure 3.13, starting at the 12 o'clock position, the forces can be summed as

follows:
Fl= LS X,
cos 0°
and
K
Fo=
2 o8 20° x et

The effective stiffness value Kgrr, which is equal to

Kerp = % : (3.1)

where f = Cos 0° + Cos 20° + Cos 40° + Cos 60° + Cos 80° + Cos 100° + ... Cos
340° .

NODE-TO NODE

NSLATIONAL
SPRING

20 degree angular |
seperation between
springs

Figure 3.13. Needle Bearing Geometry.
The resulting stiffness value for the needle bearing springs is 21.2 x 105 N/m.
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d. Barrel Locking Lugs

The barrel locking lugs were modeled using three nodes on the end of
each barrel. The nodes are spaced consistent with the pitch of the locking lugs.
These nodes have counterparts in the rotor. The barrels and rotor were aligned,

and these nodes were merged. They are ideally fastened.

e. Ball Joint

The ball joint is a mounting or boundary condition. A decision was made
to model the stiffness of the ball joint. The ball joint provides stiffness to the
mounting equally in the Y and Z directions. It is not necessary to model the entire
geometry. The stiffness of the ball joint is its significant contribution to the model.
The local dynamics cf the ball joint are unimportant. However, its kinematic

contribution to the model is important.

To
RQUSING ASSEMB
COVERPLATE

PINTLE

Figure 3.14. Finite element model of the ball joint cup.

A separate model of the ball joint cup was built using linear quadrilateral
thin shells as shown in Figure 3.14. A linear static analysis was completed. A
known force, F, was applied at a node, and the subsequent displacement, x,

measured. The linear elastic stiffness of the cup, k.p, was determined using
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Hooke'’s Law, F = k,, x, to find
koo =Fix .

The resulting stiffness value, k., is 7.7 x 10° N/m.
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Figure 3.15. Ball Joint pintle.

It was also necessary to calculate the stiffness contribution of the pintle
to the ball joint with a simple hand calculation. The pintle was approximated as a
steel rod of length 4.4 cm and diameter 2.5 cm as shown in Figure 3.15. Using
(3.2), the stiffness, kpiny,, Was computed using a standard clamped-free cantilever
beam equation,

3E I
L3

kpc'ntle = ’ (3.2)

where E is the modulus of elasticity of steel, I is the area moment of inertia about
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an axis perpendicular to the pintle’s length, and L is the length of the pintle. The
resulting value of kpinye i8 155.5 x 10°N/m. The stiffnesses of the cup and the
pintle were treated as two linear springs in parallel. Their stiffnesses are additive.
The resulting equivalent stiffness for the ball joint is 163.0 x 10 N / m in both the
y and z directions. The ball joint was simply modeled as a single node, two node-
to-node translational springs, and a rigid element. The node is located at a
position consistent with the gun in the "firing" position as discussed above in
section E. This node was connected with a single rigid element to eight nodes on
the back cover plate. This would simulate an even distribution of the load that the
cup would impose on the housing assembly’s cover plate. The two node-to-node
translational springs have a stiffness value of 163.0 x 10° N/m. The ball joint was

simplified to one node and three elements as shown in Figure 3.16.

© . ————

l Rear Ball Jotnt I —

N

/

Figure 3.16. Ball Joint. | b

A comparison of some of the properties of the gun model to the actual -

M61A1 gun is summarized in TABLE 3.2.

These parameters are only a comparison of the solid properties. The
model and the actual gun are geometrically in close agreement. However, this is

important in determining the natural frequencies, there are an infinity of mass and
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TABLE 3.2. MODEL COMPARISON.

Mass (kg) Center of Gravity (cm) Moment of Inertia (kg-m 2)
CG., CG, CG, I 1, I,,
M61A1 113.5 53.83 0.04 0.0 6796 2.38¢5 | 2.38e°
Model 120.5 55.2 -0.304 -0.053 7240 2.59¢5 2.60e5
% Diff. 5.81 2.48 5.75 5.40 6.13 8.01 8.40

stiffness values that could result in a specific natural frequency. The correlation of
these mass values is very important. It bounds the particular stiffness values that
result in the natural frequencies from the eigenproblem. The ultimate comparison

is in the mode shapes and frequencies between the model and the actual gun.

F. GROUPING

A group is a user defined subset of elements in the model. Groups are used
to simplify selection of particular elements, for display flexibility and analysis.
They provide a better understanding of an existing model. In the gun model, there
are 21 groups that identify each individual component of the gun as well as
subassemblies. The six barrels, the muzzle and mid-barrel clamps form the six-
barrel system group seen in Figure 3.17. The use of groups allows the model to be
easily modified and analyzed.

47




Figure 3.17. Six-Barrel System Group.
G. ELEMENT QUALITY CHECKS

I-DEAS has several features to help identify glaring modeling errors. It is
important to realize that these checks will not reveal errors in the selection of
elements or element density. They are designed to make sure the model is "clean".
Typical problems that may arise are duplicate nodes, duplicate or missing
elements, and element distortion. Consulting I-DEAS FINITE ELEMENT Manual
under element quality checks will provide more details on these options. Below is
a brief description of the quality checks that were used in forming the gun model.
(Ref. 21)

1. Free Edge Check

The element free edge check displays the boundaries of a model. This can

quickly alert the user to any missing elements or connectivity problems.
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2. Element Distortion

Element distortion is another important check. The result of the check is
a quantitative listing for each element in the model with values ranging from -1.0
to 1.0. A value of 1.0 represents a perfect square shape while values less than 0.0
are unsatisfactory. Acceptable values are between 0.5 and 1.0. Typical results for
the gun model were between 0.6 and 1.0 with the mgjority around 1.0. Element
distortion plays an important role in a stress analysis model so that highly
distorted elements in areas of high stress concentration should be avoided. Some

distorted elements can not be avoided due to the geometry being modeled. (Ref. 22)

3. Coincident Node Check

Coincident nodes can be identified and eliminated as a part of cleaning
up the model. These extra nodes add unnecessary size to the stiffness matrix
increasing the run time. A node is considered coincident, if it is within a user
determined distance of another node. The nodes that are identified can be
automatically deleted and the program will automatically merge adjacent elements

to share the same nodes.

H. BANDWIDTH MINIMIZATION

A large model has many nodes and elements used to represent the system.
This results in many system equations. It is difficult to find a numerical solution if
the equation matrix is full. The accuracy will improve if the matrix has its non-
zero terms clustered near the diagonal. This reduces the number of operations and

the roundoff error carried along in each operation.

In FEM the node or element numbering pattern can strongly influence the
bandwidth. A well planned numbering sequence can minimize the matrix
bandwidth. The term bandwidth applies to the characteristic bandwidth of the
global stiffness matrix. The elements of the stiffness matrix tend to lie along a
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band centered about the matrix’ diagonal. Outside the band the elements are
zeroes. There are two general methods for setting up the order of the equations in
assembly of the global stiffness matrix. One uses the node number numerical

sequence and the other uses the element number numerical sequence.

1. Node Resequencing

Node resequencing is automatically conducted by the model solve
command. The width of the band is determined by the sequence of the node
numbers. If the size of the band can be minimized, the solution time will be
reduced and the accuracy improved. Figure 3.18 shows two different node
sequences for the same structure, and their resulting stiffness matrices. Notice the
structure with resequenced nodes has a much narrower bandwidth, therefore

shorter run time. ( Ref. 23)

2. Wavefront Optimization

Wavefront optimization is a function of the element numbering and can
also reduce run-time. Wavefront pertains specifically to the bandwidth of the
stiffness matrix using an element numbering sequence. Figure 3.19 shows two
different element sequences and their associated stiffness matrices. The structure

with resequenced elements has a narrower wavefront. (Ref. 24)

I. BOUNDARY CONDITIONS

Boundary conditions are imposed conditions on the boundaries of the model.
These imposed conditions can be in the form of an enforced displacement or an
applied force on a specific nodes. The boundary conditions of the gun model are in
the form of enforced displacements or restraints. Prior to solving any model, the
boundary conditions must be specified such that rigid body motion is prevented.
The gun model has three mounting points that hold it in space, preventing rigid

50




NODE SEQUENCED EQUATIONS

Q® & ® 6

Q6O 6 @ ®

(D}

(Xl

(D}

(K

A
[ N
- N OO € ¥
3 3 > 2 o
. W)

Y
' © X o x!
o X o X o
o X X o X
O X X X ©O
FX o o o XL
f N
- N OO ¢ w
3 3 5 = >3
Y W)

4
—o © O X xd
o O X X %
X X X o o
—x X (=] (=] 0|—
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body motion. However, the rotor and six-barrel system are free to rotate. Thisis a
problem, because a solution for normal modes, with rigid body motion, will result in
a singularity in the stiffness matrix and prevent the solution from converging. To
ensure a converged solution, Kinematic Degrees of Freedom (KDOF) must be
applied. This is discussed further in the Degrees of Freedom section below.

Boundary conditions also provide a means to model functions of certain
components. Specifically, the muzzle clamp is designed to prevent rotations of
three of the six barrels and allow three to be free. Deactivating a specific DOF can
be used to represent this problem.

1. Restraints

Restraints serve to anchor the model to ground. Restraints at a
particular node are determined by two inputs. First is the user enters one of two
values, 0.0 for restrained displacement or "free" for the degree of freedom to move,
for each of the six DOF. The gun model has one restraint set which consists of the
restraints of several different nodes. The restraints applied to the gun model are
at the nodes connecting the recoil adapters to ground. These nodes have all DOF
restrained except for rotation about the z axis and x translation as shown in Figure
3.20. This mimics the pinned connection of the recoil adapters to the forward yoke,
and allows the translations of the recoil adapters. The other restraints involved
restraining the node-to-node translational springs used in the ball joint and recoil
adapters to ground. These specific nodes have all DOF restrained.

The restraints at a particular node are indicated by single and double
headed arrows. A single headed arrow indicates that the translation in the
particular direction is restrained, and a double headed arrow indicates that the

rotation is restrained.
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Figure 3.20. Restraints applied to the gun model.
2. Degrees of Freedom

Degrees of freedom sets are created to identify special DOF in a model,
and the gun has 22,500 physical DOF. This number is a summation of the DOF of
all the nodes in the model. The DOF a particular node has is determined by the

element family.

In the model the gun bearings are formed using springs. Therefore, the
rotating assembly does not have true rigid body motion. If the rotating assembly
wants to rotate, the springs of the bearing generate strain energy. The rotating
assembly is not allowed to rotate fully and freely. However, this quasi-rigid body
motion is undesirable in the normal mode solution. There are four Kinematic DOF
(KDOF) assigned in order to remove the quasi-rigid body mode of the rotor / barrel
cluster assembly. This mode is valid in a dynamic system, but there must be
enough KDOF assigned such that if they act as restraints they will "restrain” out
the motion. Four nodes were chosen at the rotor's mid-point and 90 degrees
relative to each other. In order to remove this rotational rigid body mode, two
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nodes have the translation in the y direction and two have the translation in the z
direction chosen, such that if they act as restraints the motion is eliminated.(Ref.
25)

The six nodes that represent the attachment point of three gun barrels to
the muzzle clamp have their x rotation DOF deactivated. This prevents the
_rotation of three barrels about their longitudinal axis. This is a design condition
that is imposed by the muzzle clamp. Every other barrel is free in this respective

direction.

3. Case Set

Prior to solving a model, a case set must be defined. A case set identifies
the DOF sets, restraint sets, and load sets as applicable. The gun model case set

consists of one restraint set and one dof set, as described in the paragraphs above.

J. SOLUTION

The I-DEAS FEM module solves for the normal mode dynamics, which
includes the mode shapes and natural frequencies. The mode shapes can be stored
and later used for creating a modal representation of the gun model.

The Simultaneous Vector Iteration (SVI) method was used to solve for the
normal mode dynamics. The SVI method is the most efficient method for large
DOF models. It also allows for the solution of a model that has rigid body modes.
Although the rigid body motion has been "restrained” out of the model, it is still
considered to be a rigid body mode for solution purposes.

The SVI solution allows the user to select the number of flexible modes and to
identify the number of rigid body modes. The solution algorithm has a fully
automated iteration vector calculation. With the solution options set for one rigid
body mode and 20 flexible modes, the program iterates the equations of motion

until it converges on the solution. The gun model solution takes approximately 8
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hours on a SUN MICROSYSTEMS MULTI-PROCESSOR WORKSTATION. The
solution completes 10 iterations to converge on the 21 modes. A general outline of
the SVI algorithm follows.

The solutions to eigenvalues, each with a natural frequency, can be

formulated in terms of the stiffness matrix [K] )

] ] {xt=r{] 33
where A = ®? is the eigenvalue. With this basic equation, the algorithm will iterate

and converge on a value for the eigenvalue A and the eigenvectors {X} The steps

are below.

1. Arbitrarily assume a value for {X} .

2. Substitute {X} into the following equation:

| lxl
M{X}={h x,b. (3.3.2)
113

3. Normalize the vector from step 2.

4. Use the normalized vector as an imposed value of {X} and

substitute into (3.3).
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5. Carry out the matrix multiplication, approximating {X}

6. Repeat until two consecutive iterations converge to the same

value for {X}, and the equation is satisfied.

The final normalizing factor to which the iteration process converges is

the eigenvalue, A, and {X} is the associated eigenvector. (Ref. 26)

This method takes advantage of the orthogonality of the eigenvectors
which represent mode shapes. After the first eigenvalue and eigenvector is found,
the solution begins with an assumed vector that is orthogonal to the first. In
addition, the eigenvector from the first solution is "swept" from the solution. This
prevents the first eigenvector from influencing the second. This procedure is

continued until the desired number of modes is solved.

K. FREE VIBRATION AND MODAL ANALYSIS

The solution of normal mode dynamics involves solving the eigenvalue
problem for an entire system. An n DOF system has n natural frequencies, and
for each natural frequency has a corresponding normal mode shape. The normal
modes define a particular relationship between the amplitudes of oscillations of the
coordinates. The squares of the natural frequencies and the corresponding
coordinate values of the mode shapes are the eigenvalues and eigenvectors,
respectively.

Consider 1 element from the discretized rod of Chapter 1. Each element has
two nodes and two DOF. The resulting stiffness and mass matrices are 2 x 2. The

resulting equation of motion for free vibration is as follows.
)+ [ {d <. 0
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Define the nodal displacement vector x(¢)
_lx i(t)
x(t) -{xz(t)} ’
and assume a solution of the form
{x(t)} =C «x) ei“ ’

where C is a complex constant, ¢ is a spatial vector, and ® is proportional to the
natural frequency. Taking the appropriate derivates and substituting into
equation (3.4) yields

b ] e e =0

The problem is to find non-trivial values of ® (eigenvalues) and the corresponding
eigenvectors, ¢. The resulting set of linear homogeneous equations has solutions, if
the determinant of the coefficients is zero. The values of @ satisfying this are the
eigenvalues of the problem. Corresponding to each eigenvalue there is at least one

eigenvector. The determinant is
Det[[K] - w? [M] ] =0, (3.6)

and the result is a polynomial in . The non-trivial solution of the eigenvalue
problem is found by solving for the roots of the characteristic equation

(- ) -0

In this case, since there are two DOF there will be two eigenvalues. To determine
the respective eigenvectors, the eigenvalues are substituted back one at a time into
(3.7) to find

[ ] + 1] ) o} @
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The resulting eigenvectors are a corresponding set of relationships between the
unknown ¢; values. The eigenvectors describe the normal mode shapes,
corresponding to the natural frequencies. For the first normal mode w,;, the result

is

The mode shape vector ¢ is typically normalized with respect to the maximum

displacement component in the vector. For example if x, =1, the resulting

oo -

There are alternative normalization methods. For example, the vectors could be

eigenvectors are

normalized such that the resulting modal mass is equal to one.
¢: 7M1 ¢; = 1,fori = .
where ¢; T is the transpose of ¢. The transpose of a matrix is defined as
A;T=4A; .

A unique feature of the eigenvectors is that they are orthogonal to one
another. The SVI solution method takes advantage of this characteristic in the
iteration of normal modes. Basically there are two orthogonality relationships
involving the normal modes. One involves the mass matrix [M], the other the
stiffness matrix [K]. The relationships are easily developed starting with (3.7) and
the fact that [M] and [K] are real symmetric matrices, and are equal to their

respective transposes. Consider two different mode shapes i and j, denoted on
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their respective eigenvectors as superscripts. Substituting each of these one at a

time into (3.7) results in

[K] {0‘}= o2 [M] {¢‘} : . (3.8)
[K] {w} = 0, [MJ. {v‘} : (3.9)

Multiply (3.8) by the transpose of {0’} and (3.9) by the transpose of {d}‘}

bl e

T
{y’} = w;? [M] {V} {&} . (3.11)
Rearranging, these become

I
o W ¢ e

Subtracting (3.13) from (3.12) results in

0= [m,-z-mjz] {M}T [M] {&} : (3.14)

If ;2 # ;% then i # j, and the result is

{V}T [M] {4;‘}:0 . (3.15)

Considering two modes i =2 and j = 1, results in

giving
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1 4, 17 |M1 Mig| 627
The first mode is orthogonal to every other mode. The eigenvectors are basis

vectors that represent a dynamic state of the system. The two conditions for

orthogonality are summarized as follows:

T
{@i} [M] {q;"}:o for i #j,and (3.16)

=M fori=j. (3.16.a)

Similarly, it can be shown that

T
{0’} [K] {cp'}: 0 fori #j,and (3.17)

=K fori =j . (3173)

where M is modal mass, and K is modal stiffness.

The orthogonality relationships are fundamental to decoupling equations of
motion. Considering the entire continuous rod element as a system, the resulting
equations of motion are coupled. In the case of the continuous rod, the system is
considered to be statically coupled. The global stiffness matrix [K] is nondiagonal.
To decouple these equations of motion, it is necessary to perform a linear
transformation. The transformation involves the creation of a modal matrix, [®].
The modal matrix is a square matrix, in which the columns correspond to the
eigenvectors of the system. For a system with n DOF

)

(@)=
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The uncoupling of the equations of motion in terms of the mode shapes simplifies
the analysis of a multiple-degree-of-freedom system. The process is called modal
analysis.

Solving the eigenvalue problem for free vibration, results in the solution of the
normal modes and natural frequencies. The eigenvalues are proportional to the

natural frequencies f;

; d
fl = 2 x
Where ©,2 is the eigenvalue equal to
2 K
W=+ .
M,

The corresponding mode shapes are the eigenvectors.

Starting with the free vibration equation of motion

[M] {i} + [K] {x} =0, (3.18)
te=[o] {of. @19

where {q} is a sinusoidal temporal term. For an elastic mode ¢ has the form

assume a solution of the form

g=Acosw +Bsinwt .

For a rigid body mode, ¢ has the form of a polynomial. @ is the square root of the
eigenvalue. Taking the appropriate derivatives of (3.19) and substituting into
(3.18) results in

] [6] g+ [ [o] {af =0 20
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Multiplying by the transpose of the modal matrix gives

ol ] (o] + [ [K] [o] {ef =0 @21

The result is the following diagonalized matrices:

ol [ [o]- P 3| =

the diagonalized mass matrix, and the diagonalized stiffness matrix

ol [ [o]-5 9| -4 -

The result is a set of uncoupled second-order ordinary differential equations,

Poe] it « (i lff=o ’ @22)

The equation representing the ith row is a scalar second-order ordinary

differential equation,

Ma‘ (.i" +K" q; = 0. 3.23)

Multiplying by 1/M;; gives
G + M—; g =0, and (3.24)
g +w;2q; =0 . (3.25)

If the eigenvectors had been normalized according to unit modal mass, (3.25) would
have resulted directly.

The result is an equation of motion for a one DOF simple harmonic oscillator

with angular frequency w;. The resulting natural frequency, f, is

A Vo 2
fi= T (3.26)
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The associated column of the modal matrix is the corresponding mode shape. For a
system of n DOF there are n such equations. It follows that the undamped free

vibration of an n DOF system can be described using

r ( W
X q1
X2 q2
X3 qds3

V. (=M.,
Xn qn

\ P, \ P,

where x; are generalized coordinates used to describe the vibratory motion.

The greatest advantage of modal analysis is iis use to determine the response
of forced systems. This topic will be discussed in the following chapter. The same

approach is used, but the right-hand-side term in the equation of motion is no

longer zero.
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IV. DYNAMIC ANALYSIS

A. INTRODUCTION

A structure that experiences a time varying load will also have a time varying
response. For time varying loads at low frequency, the response is approximated
by the static solution in proportion to the load. Low frequency is considered to be
less than one third of the lowest natural frequency of the structure (Ref. 27).

However, when the load varies more rapidly, inertial effects and damping
effects must be considered. This chapter presents the types of dynamic analyses
that can be done, and the factors involved in performing a finite element analysis
for the dynamic problem. The element structural formulations and classifications

remain valid.

The response of a forced system depends primarily upon the system’s natural
frequencies, the damping present and the characteristics of the excitation. If a
periodic excitation contains a frequency component that has the same frequency as
one of the system’s natural frequencies, a condition of resonance occurs. The
displacement amplitude response of a system excited at one of its natural resonant
frequencies, becomes infinite for an undamped mode. The corresponding stresses
and strains will ultimately lead to nonlinear behavior and material failure of the

structure.

Dynamic analysis allows for a quantitative understanding of the response of a
system subjected to various load conditions. Specifically, I-DEAS allows the user
to apply excitation forces in either the time or frequency domain to obtain zero,
first, or second order responses of displacement, velocity, or acceleration for any or
all nodes. The response can be displayed either in the time or frequency domain,
consistent with the excitation force. The particular application for the M61Al
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model involved the zero-order displacement response in both the time and
frequency domains. The next chapter will address the specific results of the forced
response of the model.

The foundation of dynamic analysis is the creation of an analytical modal
component. An analytical modal component is a numerical representation of the
model using its natural mode shapes. The model is transformed from the physical
to the modal domain. In the physical domain, the model has 22,500 DOF. In the
modal domain, the number of DOF is chosen by the user based on specific criteria
to ensure the model’s behavior is properly represented. The criteria for selecting
modes is discussed in Section E. The M61A1 will use 21 modal DOF. Reducing
the number of DOF makes the computation of a response a more manageable task

for the computer’s algorithm.

The frequency content of the excitation force determines the range of modes
used to form the analytical modal component. The modes that are within this
range must be carefully analyzed through animation to ensure that they reflect
reasonable gun behavior. Problems in displaying a mode’s animation may result in

modifications to the model’s mesh or boundary conditions.

The theory of modal analysis in both the time and frequency domains will be
outlined in the final section of the chapter. The most common type of dynamic
analysis is the natural frequency analysis, or the normal mode dynamics discussed
in Chapter III. This is the undamped free vibration response of the structure
caused by an initial disturbance from the static equilibrium position. Theoretically,
if any structure is initially deformed into one of its mode shapes, when released, it

would continue to vibrate in that mode shape indefinitely.

This chapter will focus on the steady-state response of the structure to a
harmonic force. In frequency response analysis, the displacement, velocity, and
acceleration responses of the structure to a harmonic input are also harmonic and

occur at the same frequency. The displacement amplitudes define the deformed
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structural shape. It is generally not the same shape as one of the natural mode
shapes unless the frequency of the input coincides with the natural frequency.

If the input loading is not harmonic, but an arbitrary time dependent
function, then a transient response analysis must be performed. One approach is
simply a direct integration of the equations of motion, and another is modal
analysis. The latter is the preferred method and the one used by I-DEAS. The
basis of this approach is an assumption that the superposition of the mode shapes
corresponding to the lower natural frequencies adequately represents the dynamic
response of the structure. The complete response is found by the summation of

linear combinations of the low frequency mode shapes.

Included in this chapter is a modal comparison of two single barrel computer
models and an actual PHALANX gun barrel. Receipt of an actual single barrel
provided the opportunity to conduct a modal test. Although, only a single barrel
was tested, it provided an understanding into the importance of modeling

decisions.

B. ANALYTICAL MODE SHAPES

The mode shapes are simply a set of relative node displacements, arbitrarily
normalized with respect to the maximum displacement component of the individual
eigenvectors. For I-DEAS, the maximum displacement is assigned 1 SI unit of

displacement. (Ref. 28)

A mode shape can not be pictured simply from the frequency values. The
graphic data file of mode shapes will consist of displacements and rotations, for
every node in every DOF, for each of the natural frequencies. Each deformed mode
shape must be examined for its ability to accurately predict the behavior of the
mesh being used (Ref. 29).
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In addition to a static display of mode shapes, I-DEAS has the ability to
animate individual mode shapes. The animation of mode shapes provides insight
into the model’s behavior, and provides direct feedback for element selection and
density.

Prior to solving the model for its normal modes, it is important to anticipate
expected results using analytical solutions. Two vibrational modes and their are
accompanying analytical solutions to their equations of motion evident based on

the gun’s mounting and bearing locations are described below.

The first example considers the simple recoiling of the entire gun with a
single DOF. This problem can be reduced to a mass supported by two springs.
The second example is more complex and considers the rotating assembly of the
gun including barrels, clamps, rotor, stub rotor, and bearings. It is anticipated
that there will be some coupled motion involving a translation perpendicular to the
longitudinal axis of the gun and a pitching motion in the same direction. This
would couple 2 DOF. Later in this section, several mode shapes from the model
will be discussed. A comparison of these analytic solutions will be made to actual
modes of the model. The SDOF calculation has a correlation to mode 3 and the
lower frequency. The coupled 2 DOF problem, has a correlation to mode 9. The
higher frequency in the 2 DOF problem was not matched. The frequency at 704 Hz
was out of the range of interest. These calculations do not completely validate the
model. Because of the assumptions made for the analytical solutions and the
complexity of the model’s dynamics, these calculations are estimated solutions.
But, agreement between the analytical solutions and the simple modes is
important to establish and gives insight to the solution.
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1. Single Degree-of-Freedom

The schematic in Figure 4.1 is a simple representation of the gun recoiling
where M =120.5 kg is the mass of the entire gun, and Kz = 5.9x10°N/m is the
elastic stiffaess of a recoil adapter.

4\ Motion
nuug
vy
M
L]
% >

X
Figure 4.1. Schematic of a simple harmonic oscillator.

Starting with Lagrange’s equation, the undamped free equation of motion can be
developed using the actual gun’s parameters. The goal is to predict the natural
frequency of the mode. Lagrange’s function L is shown in (4.1) where T is the
kinetic energy and V the potential energy of the body of mass M.

L=T-V, 4.1)
T=%MX? 4.2)

Treating the two recoil adapters as two springs in parallel, their stiffness values
are additive. The resulting potential energy is

V= % (Kp+Kg) X2 . 4.3)

Substituting into Lagrange’s function gives
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L= [% M X’] - [% (KR+KR)X"’] . (4.4)

Lagrange’s equation of motion is

rry —|-==0. (4.5)

Joo

where ¢; and ¢; are the generalized coordinates representing X and X,
respectively. Substituting (4.4) into (4.5), the resulting equation of motion is

MX+2Kg X=0, (4.6)

where the frequency of oscillation is seen to be

1
2Kg |2
0n | ] .
Equation (4.6) represents the equation of motion for a single DOF harmonic
oscillator. The angular frequency of oscillation is ® and the corresponding natural
frequency is f

Substituting in the actual gun parameters, the natural frequency is found to be

f =15.8 Hz

2. Coupled Two Degrees-of-Freedom

The coupled two DOF problem depicts the motion of the gun pitching and
translating in the x-y plane. The problem can be treated as a rigid mass that is
supported by two springs and is allowed to translate and rotate about its center of
gravity (CG). The motion of the mass couples 2 DOF because any vertical
displacement in x results in a rotational displacement 8. To consider this motion,

it is only necessary to examine the effects of the gun's rotating assembly of six
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barrels, barrel clamps, rotor, stub rotor, and both bearings. It is assumed that it is
rigid with a constant cross-section, and the mass that is evenly distributed. A
schematic is provided in Figure 4.2 where M = 100 kg is now the mass of the
rotating assembly, I, = 2.4x10% cm 2 kg is the mass moment of inertia about the Z
axis with respect to the CG. L, = 25.6 cm and L, = 57.1 cm are the distances from
the CG to the thrust and needle bearings, respectively. Assuming that

displacements in 0 are small, the small angle approximation is used and sin 6 = 6.

Figure 4.2. Coupled two DOF system.

Again returning to Lagrange’s equation, the kinetic energy is

1yt 1l @
T=gMil+ I, 0.

The potential energy contains the coupling of the rotational and translational
generalized coordinates X and 6,

V=%K~(L20+X)2+-%KT(X+L10)2 :

Where Ky =5074x10°N /m, and Kr = 654x10° N /m, are the equivalent
radial stiffnesses of the needle and thrust bearings, respectively. The resulting

equations of motion are
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MX+Kr(Li0+X)+Ky (X +L20)=0 ,and
I, 0+Kp Ly(L,0+X)+Ky Ly X +L48)=0 .
Rearranging and collecting like terms gives
MX+X Ky +Kr)+0Kr L, +Ky Ly , 4.7
and

I, 6+X (KpL,+KyLy) +6 (KrL2+KyLJ?) . (4.8)

The term proportional to (Kt L; + Ky Lj) present in both (4.7) and (4.8) is
referred to as the coupling term, coupling the 6 and X displacements.

Using the following form for the time dependence of X and @

X(t)=Asinot ,

gives

Xt)=-?X @) ,
and

6t)=Bsinot ,
gives

B(t)=-aw?0 () .
Substituting into (4.7) and (4.8) results in
Asinwt (~-0*M +(Kr +Ky)+B sinwt (KrLy+KyL2)=0 (4.92)
Asinwt (Kr L +Ky Ly)+B sinot (~w?I, +(KrL,2+KnyL;%))=0 (4.9b)
Taking the determinant of the above system of equations gives

(—~0*M + (K7 +Ky)) (Kp Ly+Ky Ly)

(KrLi+Ky L) (-0?l,, + KrL2+KyL3y®) =0,
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which is quadratic in ©?. Defining
Ks =(KrL® + KyLj?, Kg =(Kr + Ky), Ko = (Kp Ly + Ky L)),

the quadratic equation, (4.10), can be simplified so that

K< K
m‘-mz[ls + J]* MII [KE KS-K02]=O . (4.10)
F-4 2

The roots of (4.10) have positive and negative values of ®?, but only the positive

values of w? have physical significance. Using the gun parameters, the results are

d 2
@2 = 6.9x10° [—:‘f;] ,

and
rad 2
2 _ 6
wy* = 19.6x10 [ ] .

The corresponding natural frequencies are:

(051
=—1=132Hz ,
f1 o 3

and

o]
=— =704 Hz .
f2 o z
The mode shapes associated with these frequencies can be easily determined.

Substituting »,2 back into (4.9a) and (4.9b) results in

(-0 M + (K7 + Ky)) (Kp Ly +Ky Ly X\ _o
(Kr Ly +Ky L)) (-w®I, +(KrL,®+ KyLy?%)) -

Substituting in values results in

o _
¥ =001,

for the first mode. Similarly for w,%, the second mode is
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e——
X - 0.02 .

Normalizing these ratios by letting X =1 , the resulting eigenvectors or mode

shapes are

and

el da

The first mode shape describes the system for undamped free-vibration at 132 Hz.
Since the ratio is positive the system is pitching and heaving in phase. The second
mode shape describes the system for undamped free-vibration at 704 Hz. Since
the ratio is negative the pitching and heaving are 180 degrees out of phase.

These hand calculations have simplified the complexity of the actual gun
dynamics. However, they still provide a crucial reference to compare the
computer’s results. The actual motion of this complex system will not be purely in
any one mode, because the recoil adapters and bearings pruvide for extensive

coupling of motion for all modes.

C. MODE SHAPES FOR THE M61A1 FINITE ELEMENT MODEL

With an understanding of two anticipated mode shapes and quantitative
results for expected natural frequencies, the computer results for the gun model
can be studied with more confidence. In all, 21 flexible modes were solved, with a
range of frequencies from 14 to 308 Hz. Appendix B contains a set of all 21 modes,
in ascending order by frequency, with x-y or side view. TABLE 4.1 is a listing of
the frequencies of all modes in ascending order of frequency. A description of some

of the lower order modes is discussed below including displays of the individual
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mode shapes. All are isometric views with the maximum deformation represented
as eight percent of the computer screen dimension. The dashed lines outline the
boundaries of the undeformed model. These deformations are exaggerated for
clarity and no attempt should be made to derive quantitative results from these
mode shapes. Only the relative nodal displacements are accurate. Note also that
the descriptive comments for each mode are provided through the benefit of

viewing the animation of these modes.

TABLE 4.1. MODES 1-21 FOR THE M61A1 FINITE ELEMENT MODEL

Mode No. Frequency (Hz) Mode No. Frequency (Hz)
1 3.3 11 179
2 144 12 231
3 15.5 13 243
4 16.0 14 246
5 35.3 15 254
6 55.3 16 255
7 111 17 274
8 116 18 274
9 129 19 289

10 165 20 308
21 309
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Figure 4.3. Isometric view of MODE 1.

1. MODE1

Mode 1 at 3.3 Hz represents the rotation of the six-barrel assembly and is
a computational artifact. Rotational motion should not generate any strain energy;
it should be a rigid body motion of the rotating assembly. The use of translational
springs to model the ball bearings in the gun’s bearings introduces an artificial
second order effect. As the rotating assembly rotates strain energy is being
generated which results in a non-zero quasi-rigid body mode. In order to prevent
this undesirable mode from corrupting the higher order flexible modes, it was
restrained out using KDOF as discussed in Chapter III, Section 1.2. The mode is
treated as a rigid body mode for purposes of the solution.

Figure 4.3 is misleading. The computer’s graphic interpretation has made
it appear that the rotating assembly has swelled out of the housing. With the
benefit of animation, the actual motion is depicted as a rotational oscillation of the
rotating assembly about the gun’s longitudinal axis.
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Figure 4.4. Isometric view of MODE 2.
2. MODE2

Mode 2 the yawing mode at 14.4 Hz, and is the first actual flexible mode
of the gun. The overall motion is the six-barrel system yawing in the x-z plane.
The recoil adapters are not being exercised. There is localized deformation of the
cover plate and the six barrels have no local deformation. It appears that the
bearing stiffnesses play a significant role in this mode shape. Figure 4.4 shows the
deformed geometry of mode 2.

3. MODEsS

Mode 3 is the recoil mode at 15.5 Hz, and exercises the recoil adapters in
translation. The gun is translating in the fore and aft directions. However, the
motion is not purely in the x direction. There is also a coupled pitching motion in
the Y direction that is pronounced at the extremity of the recoil mode’s translation.
The rear cover plate is deformed as is the ball joint. The six-barrel system shows
no deformation. This natural frequency i8 in close agreement with the hand
calculation for the single DOF pprlem calculated above, at 15.8 Hz. Animation of
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Figure 4.5. Isometric view of MODE 3.
mode 3 also verifies the recoil motion with a slight pitching of the six-barrel system
as shown in Figure 4.5. This mode is a result of the way the gun is mounted.

Figure 4.6. Isometric view of MODE 4.
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4. MODE 4
Mode 4 is the pitching mode at 16.0 Hz, and is a rigid body pitching of
the gun in the y direction. The recoil adapters are exercised moderately while the
rear cover plate appears to be experiencing some plate bending. The six barrels
show no local deformation as seen in Figure 4.6. It appears that this mode can
also be attributed to the way the gun is mounted.

Figure 4.7. Isometric view of MODE 5.

5. MODES

Mode 5 is the rocking mode at 35.3 Hz, and is an overall rocking of the
gun about the z axis at the center of gravity. The needle bearing and the rear
cover plate are experiencing significant deformation. The recoil adapters are
exercised as the pitching reaches the extremity of its range of motion. This mode
involves the entire gun pitching in the x-y plane. Mode 4 involved pitching in a
plane that was slightly rotated with respect to the y axis. The six barrels remain
undeformed as seen in Figure 4.7. This mode can be also be attributed to the gun’s

mounting.
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Figure 4.8. Isometric view of MODE 6.
6. MODEG6

Mode 6 is the ovalization mode at 55.3 Hz, and is an ovalization of the
housing assembly. The recoil adapters are asymmetrically loaded and there is a
significant bending of the rear cover plate. The six barrels show no local
deformation as seen in Figure 4.8. This mode is attributed to the structural design
of the bousing assembly and its interface with the angular contact bearing.

Figure 4.9. Isometric view of MODE 7.
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7. MODE?

Mode 7 at 110 Hz is the first mode to involve bending of the six barrels.
The barrel clampe cause the six-barrel system to behave as a deep-flanged beam.
The six-barrel system's first bending mode is a shear deformation. The significant
deformation takes place forward of the mid-barrel clamp, and the muzzle clamp
serves to maintain the relative positions of all six muzzle tips as seen in Figure 4.9.
It is important to note that the first bending mode of the six-barrel system is at
110 Hz when they are attached to the gun system. If the six barrels and clamps
are treated separately in a clamped-free condition, they have a natural frequency
of only 35 Hz. The clamped-free condition represents the classic cantilever beam.
One end of the beam is fully restrained in all DOF, and the other end is free in all
DOF. This significant change in natural frequencies highlights the effect of the
bearings and mountings on the six-barrel system. It confirms the decision to
include the bearings and mountings in the analysis. The bearing structure and
mountings have a profound impact on the modes of vibration of the six-barrel
system. Mode 7 can be attributed to the stiffnesses of the barrel cluster and
bearings.

FLEXURE
Yy SHEAR

-4

Figure 4.10. First mode of a clanfped-free deep beam in a) flexure and in b) shear.
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Figure 4.11. First bending mode of a clamped-free slender beam.

To elaborate on the comments above, a brief discussion is provided
describing the deep-flanged versus slender beams, and the mechanisms of bending.
Deep beams are those whose ratio of span length L to the depth H in the direction
of vibrational deformation is not much greater than one, or maybe less than one.
Shear deformation becomes important in deep beams, and is more donrinant than
flexural deformation. Figure 4.10 shows the first mode of a clamped-free deep
beam in flexure and in shear. Notice the significant difference in the deep beam’s
bending mode due to shear versus flexure. The behavior of the deep beam is
strongly dependent on the relative distance from the restraint. A slender beam’s
deformation is due to bending or flexing. A single barrel can be thought of as a
slender beam with a tubular cross-section. Figure 4.11 shows the first bending
mode of a single clamped-free slender beam due to flexure. (Ref. 30)

Figures 4.12 and 4.13 are the first bending modes of a clamped-free
single barrel and clamped-free six-barrel system. Notice the similarity to the
slender beam and deep-flange beam respectively.
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Figure 4.13. First bending mode of clamped-free six-barrel system.
8. MODES

Mode 8 at 116 Hz shows increased deformation of the six-barrel system.
The recoil adapters are asymmetrically loaded and animation reveals pitching in
the x-y plane. The line-of-motion is slightly rotated in the counter-clockwise
direction from the y axis. The muzzle clamp maintains all six barrels in the

horizontal plane. An increased g€mount of flexure is evident in the barrel group
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Figure 4.14. Isometric view of MODE 8.
while the housing has only slight deformation. However, the needle bearing axle
has significant deformation. Mode 8 can be attributed to the barrel cluster

characteristics, and the needle bearing stiffness.

MODE 9
129.3 Hz

Figure 4.15. Isometric view of MODE 9.
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9. MODEY

Mode 9 at 129 Hz closely resembles the analytical coupled 2 DOF
problem. The analytical solution has one of its frequencies at 132 Hz. This
frequency corresponds to an in phase pitching and heaving of the rotating assembly
within the bearing structure. Animation of mode 9 displays this same motion.
However, in mode 9 the six-barrel group appears to have slight deformation.
Animation reveals this deformation as a ripple down the barrel, as it pitches and
heaves. This effect is not accounted for in the analytic solution. In the calculation,
the rotating assembly was treated as an evenly distributed mass with constant
cross-section. Mode 9 can be attributed to the stiffness values of the angular

contact and needle bearings.

TABLE 4.2 provides a summary of the first nine modes of the M61A1l
model with a brief description of each mode.

TABLE 4.2. LOWEST ORDER MODE SUMMARY

Mode No. ‘ Description Freq. (Hz.)
1 Rotation of the six barrel system 3.3
2 Yaw of the six-barrel system within the housing 144
3 Recoil of the gun 15.5
4 Moderate recoil with pitching 16.0
5 Rocking of the entire gun about its CG 35.3
6 Housing deformation 55.3
7 First bending of the six-barrel system 110
8 Increased bending of the six-barrel system 116
9 In Phase pitching/ heaving 129
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D. SIMPLE AND COMPLEX SINGLE BARREL COMPARISON

As mentioned earlier in this chapter, there were two different FEM
representations of a gun barrel. Initially, a complex barrel was built comprised of
solid linear bricks as shown in Figure 4.16. However, the number of elements for
the single complex barrel was excessive. In order to reduce the number of
elements and to stay within a reasonable DOF budget, a simple barrel was created
" from beam elements as shown in Figure 4.17.

Figure 4.16. Complex barrel.

At the same time, an actual barrel from a PHALANX system was received
from Naval Surface Warfare Center (NSWC), Point Hueneme, CA.. The barrel
provided an opportunity to conduct a modal test and compare the computer model
to the actual gun barrel. An impact point modal test was conducted on the actual
barrel in a free-free condition (Ref. 31). The free-free condition refers to the ends of
the barrel having no restraints. The free-free condition was attained using light
springs or bungee cords attached to the barrel at its quarter points. Figure 4.18
shows is the graphical output from the frequency spectrum analyzer used in the
modal test. Note the peak at 72 Hz indicating the first flexible mode of the actual

barrel in the free-free condition. The free-free condition represents the most

85




Figure 4.17. Simple barrel.

pristine condition for a modal test where the barrel is essentially free to deform in

any manner. This same condition can be easily achieved in I-DEAS. The natural
modes for the two computer models, in the free-free condition, were obtained. The
first modes of both the simple and complex barrel are shown in Figures 4.19.A and
4.19.B, respectively. TABLE 4.3 is a summary of the natural frequencies of all

three barrels.

A graphical comparison of the three barrels’ frequencies, simple, complex, and
actual is shown in Figure 4.20. There is excellent agreement of all three sets of
data from zero through 500 Hz. The range of modes retained for the analytical
modal system has frequencies only through 308 Hz. Therefore, agreement through
500 Hz is acceptable. This demonstrates the importance of element selection to
represent proper dynamic behavior. In this case, the beam elements have better
dynamic behavior, with respect to bending, than the solid linear bricks. As a result
the decision to use beam elements for the barrels reduces the overall number of

DOF and gives proper dynamical behavior.
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Figure 4.18. First flexible mode frequency response of an actual PHALANX gun

barrel in a free-free condition.

Figure 4.19.A. First mode of the simple barrel in a free-free condition.

It is important to state that this is a validation of only a single barrel.
Validation of the entire gun system is not implied. However, this demonstrates
that the procedure can eventually be scaled up to include the entire gun.
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Figure 4.19.B. First mode of the complex barrel in a free-free condition.
TABLE 4.3. MODAL SUMMARY OF SIMPLE, COMPLEX,

AND EXPERIMENTAL BARRELS.
FREQUENCY (Hz)
Mode No. Simple Complex Experimental
1 71.6 64.7 72.8
2 223.9 200.9 217
3 455.3 399.8 431
4 743.8 652.3 694
5 873.6 809.2 1040
6 11114 982.2 1428
7 1515 1357.1 1848

E. MODAL TRUNCATION / SELECTION

When solving for the normal modes of a system, the maximum number of
modes i8 equal to the number of physical DOF. The number of DOF is 22,500 for
the gun model, so that there are actually 22,500 normal modes for the system.
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Figure 4.20. Comparison of the model and actual barrels.
Any solution using less than the number of physical DOF is approximated and
truncated. The primary advantage in creating an analytical modal component is
that the number of modal DOF are significantly less in number than the physical
DOF. As discussed in Chapter III, the modal matrix allows transformations
between the two domains, and the results of a modal analysis have physical
significance upon transforming back to the physical domain.

An important decision made in modal analysis is MODAL TRUNCATION /
SELECTION. For the modal system, the number of normal modes determines the
number of degrees of freedom or possible responses of the system. The response of
a modal component is a summation of linear combinations of the mode shapes used
to define it. An analogy to the three primary colors provides insight into modal
analysis. Just as every color in the spectrum can be produced by mixing the three
primary colors, in modal analysis any response can be described as a linear
combination or mixing of the normal mode shapes. If modal truncation is not done
carefully, then the results of the dynamic response will be inaccurate. The FEM

must retain the primary colors necessary to create the colors of interest.
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There are no hard and fast rules for modal truncation. It is based on sound
engineering judgement and a consideration for the ultimate analysis. However,
there are a few rules-of-thumb that can assist in retaining an appropriate range of

frequencies.

To aid in the modal truncation, it is essential to have an understanding of the
excitation force that will be applied. In the case of the gun, the highest firing rate
has a fundamental frequency of 76 Hz. The recoil from a single shot should be
considered to be essentially an impulse. The bullet takes only about 1 millisecond
to travel down the barrel. In terms of frequency content, an impulse can be
described as a broad band of excitation frequencies. Understanding the frequency
content of the excitation is the basis for modal truncation.
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Figure 4.21. Power Spectral Density of 100 Shot Burst at 4500 SPM.

One rule that can be applied is to use the power spectral density of the
excitation force. Figure 4.21 is the power spectral density of a 100 shot burst at a
firing rate of 4500 SPM.

The specific point of interest is the 3 dB or half-power point in the spectrum.
The corresponding range of frequéncies, consistent with the half-power point, may
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be considered as a valid estimate to be used in modal truncation. From Figure
421, the corresponding half-power frequency range is approximately 400 Hz.
However, this range of frequencies alone is not a sufficient condition for retention.
The mode shapes that fall within this range should be carefully studied in order to
ensure that their motion is reasonable and consistent with the properties of the
mesh. This allows the user to truncate those specific modes in the range that may
not be important to the system response. A particular mode may have only
localized deformations, and therefore, would not be significant in the system
analysis, and can be truncated. It is more important to satisfy this latter
requirement, than to satisfy the half-power range of frequencies. For the gun
model a range of frequencies was taken up through 308 Hz and all modes 2-21
were retained. Mode 1, the quasi-rigid body mode, is truncated in order to remove
the false rigid body motion from the response.

The truncation of higher order modes is appropriate, because the effects of
higher natural frequencies are small localized deformations in many specific
components in the system. Since the goal of the analysis is to gain insight into the
dispersion problem, the displacement of the barrel muzzle tip is important. These
higher order modes will have only a small displacement amplitude when the 75 Hz
excitation force is applied with modal damping, and will contribute little to the
ultimate analysis. Figure 4.22 shows mode 21 at the cutoff frequency of 308 Hz.
Notice the deformation of the barrel group. The overall effect does not vary much
from mode 7 shown in Figure 4.9. Each higher frequency mode has one extra node
in the barrels mode shape. The significant change is the increased local

deformation of the housing.
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MODE 21

Figure 4.22. M61A1 mode 21.
F. CREATING AN ANALYTICAL MODAL COMPONENT

Modal analysis involves the uncoupling of the many differential equations of
motion describing the system. The resulting independent equations of motion
facilitate the response analysis of the multiple-degree-of-freedom system. This
procedure was demonstrated at the end of Chapter III. The equations of motion
were uncoupied through a transformation involving the modal matrix. The
resulting independent equations are expressed in terms of modal mass, the mode
shapes and modal frequencies. These equations can each be treated as single DOF
equation of motion. A system response is described by the superposition of the
responses of the individual normal modes.

In the SYSTEM DYNAMICS MODULE the analytical modal component is
simply created by referring to the title of the specific FEM solved. The
corresponding modes and frequencies are used to form the analytical model. There
is no geometry created, although the nodes and elements created in the FEM
module are displayed for presentation purposes. The model is a numerical
representation of the mode shapes.
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Decisions must be made as to which modes are to be retained and what
damping value is assigned to each retained mode. The issue of damping will be
discussed in more detail in the next chapter. The actual values become significant

when the results of a forced response are desired.

G. FORCED RESPONSE IN THE TIME AND FREQUENCY DOMAINS

As a prelude to the next chapter, the analysis of a forced response in both the
time and frequency domains is discussed here. The total response of a system can
be considered to consist of two distinct components. The first is the forced
response which resembles the excitation force. The second is the free response.
The free response, or natural response, was discussed earlier in the solution of the
natural frequencies and normal modes. This response depends only on the
characteristics of the system. However, the forced response component depends on

the specific forcing function as well as the system’s modal characteristics.
Mathematically these responses are found separately as the particular and
homogeneous solutions,

The sum of these results are the total response, X(¢), of the system. The free
response is often referred to as the transient response, because it decays with time.

The forced response is referred to as the steady-state response (Ref. 32).

1. Time Response.

As an example of a forced response analysis, consider the multi-degree-
of-freedom system shown in Figure 4.23 with N physical DOF, damping matrix
[C], stiffness matrix [K], and mass matrix [M]. An arbitrary time varying force
F(t) shown in Figure 4.24 is applied in the X direction,

93




" Q_. F()
_.EE

R Y
[Z X

Figure 4.23. System with a time varying excitation force.

Fg(t)
{F y=y 0 ¢,
0

with initial conditions, X(¢)=X(¢ ) =0.

Figure 4.24. Arbitrary time varying excitation force.
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The resulting equation of motion is

] {i}+ [¢] {1’:}+ ] {x} “F@) . (4.11)

Where all matrices are Nx N and the vectors are N components long. The system
can be transformed into a modal component, with n modes retained, or n modal
" DOF. The transformation is the same approach as in Chapter III. However, the
modal matrix is partitioned as a result of modal truncation. The columns of the
modal matrix, [¢], represent individual mode shapes. When modes are truncated,
columns are removed from the modal matrix. The equations of motion are
uncoupled using the partitioned Nx n modal matrix, [®’]. The assumed solution is
of the form in (4.12) where ¢ is the sinusocidal temporal term, and [®'] is a

partiticned spatial term,
&=o1 {d}. @12

Substituting the assumed solution into (4.11) results in a set of coupled
second-order ordinary differential equations of motion.

i o]+ ] ]+ [ o] {} ={r o}

Multiplying by the transpose of the partitioned modal matrix gives

o] o) (o3 {a+ [o17[c] [o] {i}+ [0 ] [o] {o} = [olr {r .

which diagonalizes the mass and stiffness matrices. However, the damping matrix
[C] does not usually reduce to a diagonal matrix. In order to completely uncouple
the damped vibration, the concept of proportional damping is introduced.

The damping matrix [C] is assumed to be proportional to the mass

matrix [M], the stiffness matrix (K], or a linear combination of the two. This latter
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proportionality is referred to as Rayleigh damping (Ref. 33). Lord Rayleigh
considered damping to have the form

(Cl=a[M]+B[K] .

Where o and P are constants. First consider [C] as being proportional to [M].
Upon modal transformation it follows that

(@] [c] [o] =« [o]"[n] [o]
It is common practice to assume modal damping of the form
2y, oM, =aM; ,

where y; is the modal damping factor of the i¥* mode, w; is the natural circular
frequency of the i* mode, and M; is the modal mass of the i mode. Similarly

the same can be shown for
[C]=B [K].
In this case, the modal damping is typically represented as
2% o M;=Bo?’M; .

Using the above results, Rayleigh damping assumes the form of

2y, o M; =(a+po’ )M, .
The resulting modal transformation is

olrle] [¢]-< ol o] < [T [+
ofe] ] -o o 5 -

The result is a set of uncoupled second-order ordinary differential equations.

Defining f as a "modal force", results in

f ={F (t)} [#]7
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(] af (o [o] 0 ) i+ [T} -1}

The resulting equation of motion is then

o i D)o B e (o - 1}

Defining ;2 as the natural frequency of the i* mode, results in

The resulting single DOF equation of motion is then

G+ +Badg + 0% = i ‘
M
Using the relation
2yw; =(@+Bo%) ,
the resulting single DOF equation of motion is
+2n o gralqg=—f, . (4.13)
M

The response of a linear system to an arbitrary force can be obtained by
considering the arbitrary force to be the sum of a sequence of impulses. An
arbitrary force in the time domain can be represented by a summation of delta
functions ( Ref. 34). The solution is simply in the form of a summation or
integration of these delta functions. Equation (4.13) is solved using Laplace
transforms and the convolution integral. An outline of the particular solution

follows.
Taking the Laplace transform of (4.13) results in the following

1
M;;

82X(s)-s x(0)-x 0+2y0; (s X(8)-x (0N +w2X (s)= F(s) .
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Applying initial conditions, X(¢) = X( ¢ ) = 0 gives

1

s2X()+2yw; 8 X(s)+w2X(s)= T

F(s) .

The result is the generalized product solved for the response X (s)

X(s)= 31 Fa)
i [sz+2ym.- 8 +co,-2]

Taking the inverse Laplace transform gives

sin 0; V- e ™ F(s)

M; o; Y1y

Applying the convolution integral to the generalized product results in the

q:(t)=
following:

1 ¢ ~p0; (¢ - 1)
git)s ———— [ sine, Viy2 (¢ - 1) e F(drt .
Ma @y w Io *

The total displacement q;(t) at any time ¢ is the integral from 0 — ¢ of all
impulses F(1). The solution is a convolution of an impulse response and the forcing
function. As long as F(1) is a simple function, such as a step function, the integral
can be easily solved. More complex excitation forces must be solved using
numerical methods. Convolution integrals account for the behavior of a system at
time ¢ which depends not only on its state at time ¢, but also its past history (Ref.
35).
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The result ¢;(¢) is the time response for a DOF in the system. In order
to solve for the displacement value, it is only necessary to substitute the solution
for the generalized coordinate ¢ into the transformation (4.13)

¢ 3 r 3

x4(8) q1(¢)
x4(t) qt)
4 3(‘ ) q 3(t )
1 . (=[®1Y . ¢
xn(t) an(®)

where x; are generalized coordinates used to describe the vibratory motion.

2. Frequency Response

For a frequency response, the solution proceeds in much the same way.
A particular application of a frequency response is the development of a transfer
function. In I-DEAS, the transfer function is developed By applying a unit
amplitude sinusoid to the right-hand-side of (4.11) at any allowable DOF. For this
case, damping will be ignored so that [C] = (0].

The equation of motion for an excitation in the X direction at any node

[M] {i’{}+ [K] {x} ={F(Q,t)} : (4.14)

where {F Qt )} represents the force applied at the p DOF and, has the form

has the form

v

A

F, sin (Q¢)

0
o |
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For other DOF, the force term appears in the appropriate row of the force vector
F(t) where IF,| =1.

Assume the solution to (4.14) is of the form:

ol

where the temporal term q(¢) , is of the form ¢(¢) = sin(Q ¢). The frequency Q is
the frequency of excitation. For convenience, the modal matrix, [¢], is unity mass

normalized so that
(617 (M) [¢/1=1,fori =j
=0,fori #j .

Taking the appropriate derivative and substituting into (4.14) results in

[-n’ [M] + [K] ] (4] {q (¢ )} = {F} .

Multiplying by [¢]T gives

(o [K-0M |io) {q} - m’{mm )} :

and defining the modal force as f,

ol

the natural frequency of mode i, f;, is

=1 4
fl‘zu ml ’
where
K.
2 o 8
; M,

The resulting equation is
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where (I] is the identity matrix. Note that the natural frequency matrix is
diagonalized. Inverting the result gives the modal frequency response function

=L T"1-

To convert from the modal FRF to the physical, the following relations are used

ol
gl

Multiplying by [¢], (4.15) can be written as

0 {q} 1] wr-02 ] o {F} :
{x} =01 [ wt-a2 " [¢1’{F} .

It can be shown that the above can be written as a summation over all DOF with

i1 @i-q?

and

and resulting in

the result
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Define the frequency response function (FRF), [H(Q)], as

T
i&i)H‘b(s)t
HQ)I= X

’

where n is the number of nodes, and the superscript on ¢%’ is the i* column of the

. modal matrix which indicates a particular mode shape.

The displacement transfer function represents the ratio of the
displacement response of a point on the system divided by the input force at
another point plotted as a function of frequency. The magnitude of this function
will have peaks at the natural frequencies of the system. The height of each peak
relative to other FRF's is proportional to the mode shape. The width of each peak
is proportional to the damping. The higher the damping for a particular mode, the
wider is the peak.

A component of the response matrix [H(Q)] is defined in terms of
components (p ,q) where p represents the DOF of application of the force, and q is
the DOF of the response. Therefore, an individual component is defined as

o @) [ @)

Hy Q)= 02 - Q?

At resonance, ®;2 = 2, the response matrix component for an undamped system
becomes infinite unless the system is being driven at, or observed, at a node of the
mode i, whereby the amplitude becomes zero.

Ideally a transfer function for every DOF in the system could be used to
reconstruct the mode shapes for a wide range of frequencies. They provide a

means to quickly gain insight into a system.
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V. FORCED RESPONSE

A. INTRODUCTION

The response of a forced system depends primarily on the system’s natural
frequencies, the damping in each mode, and the characteristics of the excitation
force. The response contains a full description of a structure’s dynamics. This
chapter will discuss the specifics of these parameters as they pertain to the gun
model. The forced response plots are derived from the results of the modal
analysis. The first section will discuss damping and the decisions made regarding
damping of the retained modes in the gun model. The second section will discuss
the modeling of the excitation force: a 100 shot burst at 4500 shots per minute
(SPM). The final section will discuss the forced response plots in the time and
frequency domains. The response is analyzed at the tip of the firing barrel in the
x, ¥, and z directions. The behavior of the firing barrel muzzle tip provides insight
into aim point errors and contributions to dispersion. Although the forced response
plots in the two domains are discussed separately, their analyses must be
integrated. The time response provides the analyst with a visualization of what
the barrel tip is doing. Although time is a convenient dimension to understand the
effects of response, the frequency domain provides insight into specific mode

participation in the response.

The modal system is created by a set of orthogonal normalized mode shapes.
For the gun model, 21 mode shapes were considered to provide a sufficient range of
frequencies based on an excitation force with a fundamental frequency of 75 Hz.
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The response of the gun model is limited to linear combinations of these 21 normal
modes and natural frequencies. The result of modal analysis is a set of uncoupled

equations of motion.

The uncoupled equations of motion developed in the modal analysis are
expressed in terms of mode shapes, modal damping factors, and natural
frequencies. Each uncoupled equation has the form of a forced, single-degree-of-

freedom system.

The effect of the individual modes on the total response of the system can be

expressed in terms of the n retained modes,

r r £ 9
X ¢ ¢ (4)1
X2 62 ¢2 é2
X3 03 ¢3 03
1.0=q1).( +q2)- [ +...+¢,}. .

an J L¢n J1 L¢u4 2 ‘Qn‘ n

where i =1 - n. Here the x values represent the total displacements, the ¢ s
represent the components of a particular (eigenvector) mode shape, and the g;’s
represent the sinusoidally varying temporal terms. The subscripts on the g¢;’s and
¢ 's denote a specific natural frequéncy of the sinusoidal term.

B. DAMPING

Vibrations in a system are a result of energy being transferred back and forth
between the kinetic energy of the mass motion and the potential energy stored in
the material stiffness. Vibration amplitude is limited by system damping,
specifically viscous damping which is proportional to velocity. All physical systems

have some inherent mechanism to dissipate energy, or damping. Damping causes
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the amplitude of vibration to diminish with time with no excitation force.
However, the magnitude of damping has little effect on the natural frequencies of a
system (Ref. 36).
There is no analytic method to determine the elements of the damping matrix
[C] which specifies the system damping. However, the effect of damping on
-systems is readily included when using modal analysis. Physically realistic values
can only be obtained from experimental data.
In general, there are three distinct cases of damping strength. Their
characterizations can be described based upon their impact on the single-degree-

of-freedom differential equation of motion for free vibration,
mx+cx+khx=0, (5.1)

where m is the mass, ¢ is the damping coefficient, and k is the spring constant.

Assume a solution of the form
x =elt |
where ¥ is an arbitrary variable. Substituting into equation of motion results in
the following auxiliary equation
my+cy+k=0.

If y satisfies this auxiliary equation, then the assumed solution will satisfy (5.1).
The roots to the auxiliary equation are found by using the quadratic formula

_—=< V(c§—4mk)
Y= 2m *

The specific case of damping is determined by the value of the discriminant
(c2-4 m k). The three cases are below:
I c24m k)<0 underdamping

Underdamping is the case that ¢ is small. The roots of the auxiliary
equation are complex. The physical motion is best described as the product of an
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exponential decay and a sinusoidal oscillation. The presence of damping causes the
frequency of oscillation to be slightly less than it would be in the absence of
damping. The sinusoidally varying displacement has an exponentially decaying
amplitude as shown in Figure 5.1 (a) (Ref. 37).

II. (c24mk)>0  overdamping

The roots of the auxiliary equation are real, negative and distinct. The
physical motion is an exponential decay with two different decay constants. The
system, given an initial displacement, returns to the equilibrium position without
oscillating. The damping force dominates and prevents any periodic motion as
shown in Figure 5.1 (b) (Ref. 38).

I (c>4m k)=0 critical damping

The roots of the auxiliary equation are equal. The result is one function
which is an exponential decay, and a second function which is the product of time ¢
and the exponential decay function. The resulting motion is non-oscillatory. With
an initial displacement, the system returns asymptotically to the equilibrium
position. Critical damping provides an optimum return to equilibrium as shown in
Figure 5.1 (c). It is the limiting case of the non-oscillatory mode of return to
equilibrium (Ref. 39).

In I-DEAS, the user assigns damping ratios for each normal mode
retained in the analytical modal component. The damping ratio represents a
percentage of critical damping. A damping ratio of 1.0 means the particular mode
is critically damped.

As mentioned above, there is no analytic way to determine actual
damping values. The only meaningful results are obtained from experimental data
from the actual system. The damping factor can be determined experimentally by
obtaining frequency response data for a system. By studying the variation of the
amplitude of vibration with time, the damping factor can be determined.
Ultimately, an experimental modal analysis is conducted on the actual system and
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Figure 5.1. Three general cases of damping.
the damping values are determined. These values, in turn, can be used in

subsequent analyses.

The individual modes for the gun system were assumed to be
underdamped, and each was assigned a value of 0.02, or two percent of critical
damping. These values are accepted in industry as a first estimate. The only
exception to this is mode 3, the recoil mode. It was determined that the recoil
mode is characterized by the properties of the recoil adapters. Therefore, the recoil
adapter’s force deflection curve can be used to determine the damping factor. The
force deflection curve has a hysteresis loop and from this the damping factor can be
calculated.

The area enclosed by a hysteresis loop represents the amount of energy
dissipated each cycle by the recoil adapter.

Ep=xCylz Po,

where Ep is the energy dissipated per cycle of the recoil adapter, Cy is the
equivalent viscous damping factor, x is the amplitude of displacement for the recoil
adapter, and @ is the frequency of the recoil adapter’s motion (Ref. 40). The
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dissipated energy value was computed by estimating the area enclosed by the
hysteresis loop in Figure 5.2 (Ref. 41). The result is 384 Ibf in or 43.3 x 10 N m.
The displacement amplitude is presumed to be 0.2 in, or 0.6 cm, by assuming that
the recoil adapter’s equilibrium position is at the center of the hystemsig loop or
0.5 inches. The boundaries of the loop are approximately 0.2 inches on both sides
of equilibrium. The particular mode shape that this damping value is applied to is
mode 3 at f = 15.5 Hz. The resulting value for the equivalent viscous damping is

4000

3500

3000

2300

DEFLECTION

LOAD IN POUNDS
g

g =

o 1 2 3 4 5 & 7 8 9
DEFLECTION IN INCHES
Figure 5.2. Recoil adapter force deflection curve.

Ep
Cy =
H iz 122xf

=8351kg /s .

The value of critical damping for the gun system is
Coiu =2VM Kg =23,900 kg/s .

where M = 120.5 kg is the mass of the gun system, and Kz =5.9x 10° N /m is
the recoil adapter stiffness. The resulting damping ratio is

Cy
y'.. —Cm'c =035 .
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This value was entered as the viscous damping ratio for mode 3 in the gun model.
The value is in agreement with the value used by the gun manufacturer in their

recoil adapter simulations and calculations.

In forced harmonic motion, the effect of damping is important. The
equation of motion (5.1) is modified by adding a sinusoidal driving term to the
right hand side,

mi+cx+hx=F,sin(wt+¢),

where F, is the magnitude of the force, ® is the frequency of excitation, and ¢ is a
phase angle. The solution of this linear differential equation is given by the sum of
the homogeneous solution and the particular solution. The resulting particular
solution relates the amplitude and phase in response to the driving force. If the
driving force is driven near a natural frequency, ®,, the result is a maximum in
the response’s amplitude. In the case of weak damping, there is a slight reduction
in the resonant frequency from that of the freely running undamped oscillator. For
strong damping, there is no amplitude resonance and the amplitude becomes a

monotonically decreasing function of frequency as shown in Figure 5.3 (Ref. 42).

Alw)
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i
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Figure 5.3. Effect of damping on the resonance peak.
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The sharpness of the resonant peak is directly proportional to the amount
of damping. The quality factor @ determines the sharpness of the peak. The
quality factor is expressed in terms of the natural frequency and the corresponding
half-energy point frequencies. Let f; and f, represent the frequencies, below and
above the resonant frequency, f,, that correspond to the half-energy points (Ref.
43), then the quality factor is given by

fn

Q=f2—f1 .

The phase angle difference, ¢, between the applied driving force and the
steady-state response is proportional to the driving frequency, ®, and the resonant

frequency, ®,.

2lw,-0!lo
= tan™! . .
¢ [ (wo? - ©?) ]

At © =0, the driving force is static, and the phase difference is zero. The phase
difference remains small for small w, so that the response is in phase with the
driving force. Near resonance, ® = @, , the phase angle ¢ increases to 90 degrees
so that the response and driving force are 90 degrees out of phase. For large
values of o, the value of ¢ approaches 180 degrees and the response and driving
force are 180 degrees out of phase. See Figure 5.4 (Ref. 44).

C. EXCITATION FORCE

The excitation force applied to the gun model represents a 100 shot burst at a
rate of 4500 SPM. Typical PHALANX engagements are 60 - 100 shot bursts at
the gun’s maximum rate of fire of 4500 SPM. Therefore, this excitation is
reasonable. The force was developed from analytical data provided by the gun
manufacturer. The data was computed using an interior ballistics computer

simulation, PRODAS VERSION 5.6, to compute breech pressure versus time for a
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Figure 5.4. Plot of phase difference versus frequency.

single shot (Ref. 45). The breech pressure was converted to a force by using a

cross-sectional area of a 20 mm diameter circle

=P
F = e
where P is the analytical breech pressure and A is the cross-sectional area of the

circular breech chamber,

A=xr?.

TABLE 5.1 lists the breech pressure values as a function of time for a single shot
of a MK149 20 mm round.

The force is exerted on the breech as the bullet travels down the barrel. The
shots are separated at an interval of 0.0133 seconds at 75 Hz, simulating 100
successive shots. Because the model's rotating assembly does not rotate, the point
of application of the force is from the same barrel for all shots. The six-barrel
system is oriented such that the "firing” barrel is located approximately 12.5
degrees prior to top dead center (TDC). This represents the initiation of the firing
of a round. In the gun’s operating schedule, all rounds are fired at 12.5 degrees
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TABLE 5.1. BREECH PRESSURE VERSUS TIME FOR THE MK-149 PROJECTILE.

TIME( mSec) PRESS (PSI) TIME( mSec) PRESS (PSI)
0.05 1700 0.800 56900
0.10 2500 0.850 60100
0.15 3400 0.900 62200
0.20 4700 0.950 63000
0.25 6200 1.000 62400
0.30 8300 1.050 60200
0.35 10800 1.150 51600
0.40 14000 1.250 40200
0.45 18000 1.450 23200
0.50 23000 1.650 15300
0.55 29000 1.850 11100
0.60 35000 2.050 8560
0.65 41000 2.250 6900
0.70 47000 2.312 6500
0.75 53000

prior to TDC. If the firing rate is 3000 SPM, then the round exits the barrel at
TDC. If the firing rate is 4500 SPM then the round exits the barrel at 14 degrees
past TDC. The rotation of the gun is counter-clockwise as viewed from the rear.
There are no interior ballistic effects taken into account; the torque exerted on the

barrel by the spinning round as it travels down the barrel.
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In I-DEAS, the excitation force is created using a universal file representing
evenly spaced force values. The excitation force has negative values, because the
line-of-action of the firing rounds is in the negative x direction. The data consists
of 26400 data points that are evenly spaced at 0.05 milliseconds. This is a
convenient method for data to be entered. The excitation force may be created
easily allowing flexibility for exploring various forcing functions. The force is
applied to the model by designating a specific direction and DOF. In this case,
node 1165 in the x translational DOF.

Figure 5.5 shows the plot of force versus time for a single shot. Figure 5.6
shows the fast Fourier transform (FFT) of a single shot consists of a wide spectrum
of frequencies (0-10,000 Hz). The FFT used 512 data points, which provided the
best presentation.

The FFT of a 100 shot burst fired at 4500 SPM has a fundamental frequency
of 75 Hz, and is harmonic. The FFT has 1024 data points, which provides the best
presentation. See Figure 5.7. The single shot is essentially an impulse or delta-
function. The frequency spectrum is expected to be broad. The envelope of the 100
shot burst has the profile of a single shot. Comparing Figures 5.6 and 5.7, the
amplitude of the FFT of the force for a single shot is reduced by a factor of 10 in
about 2000 Hz as is the 100 shot burst profile. This is expected because the 100
shot burst is comprised of 100 individual single shots fired at 75 Hz. The
fundamental frequency is determined by the firing rate of the gun.

D. TIME RESPONSE

Figures 5.8 - 5.10 are the culmination of the model development and
subsequent forced response analysis. The three figures represent the time
response of the firing barrel’s muzzle (node 3748) in the x, y, and z directions
respectively. From ¢t =0 to ¢ = 1.3 seconds, the gun is firing the 100 shot burst.
From ¢ =1.3 seconds to ¢ = 5.0 seconds, the excited normal modes decay due to
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Figure 5.6. FFT of a single shot.

re. 0

damping. The overall behavior of the three plots is encouraging with respect to
model behavior. At the initiation of the excitation force, ¢ = 0, all displacements
are zero. Upon completion of the 100 shot burst, time 1.3 seconds, all
displacements decay to their original zero displacement values.
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Figure 5.7. FFT of a 100 shot burst.
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Figure 5.8. Firing barrel time response in the x direction.

In the x direction the barrel tip is displaced in the negative direction by
approximately 0.96 cm. This is consistent with the displacement behavior of the
recoil adapters. In the gun’s firing sequence, the first shot causes the entire gun to
set back, and then the gun begins to return to battery. The short period of the
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firing causes the gun to recoil before it returns an appreciable distance. The result
is the first shot establishes a new equilibrium position for the recoil adapters to
oscillate. The recoil adapters allow the gun to oscillate approximately 0.6 cm. The
establishment of a new equilibrium position is representative of the D.C. or 0 Hz

component of the excitation force.

Mode 3, the recoil mode, is assigned a damping ratio of 0.35. It is sensible
that the response in the x direction is comprised almost entirely of mode 3.
Reviewing the lowest order modes, mode 3 is the only mode that has significant x
translation. However, inspection of Figure 5.8 shows the combination of two
modes. The steady-state region has jagged peaks, indicative of the combination of
two modes of different frequencies. Close inspection reveals the jagged peaks of
the oscillation. Mode 2, the yawing mode, also has moderate x translation, as does
mode 4. The second mode could be mode 2 or mode 4. The FRF will confirm which
modes are participating.
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Figure 5.9. Firing barrel time response in the z direction.

The z displacement also shows appropriate behavior. Since the shot is fired at
12.5 degrees prior to TDC, it can be expected that the shots will create a moment
about the gun’s vertical axis. As a result, the barrel tip will yaw in the positive z
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direction, establish a new equilibrium and begin to oscillate about this new
equilibrium until the shots are completed. Inspection of the z response clearly
indicates the presence of two modes. The damping envelope of the response has a
profile indicative of a beat frequency. The beat frequency results in a periodic
variation of the amplitude. It is the result of two functions of slightly different
frequencies. The beat frequency is much less than either of the frequencies of the
two contributing modes. Inspection of Figure 5.9 shows that the beat period is
approximately 0.9 seconds corresponding to 1.1 Hz. This frequency separation is
consistent with the separation between modes 2 and 3 of 1.05 Hz. It is apparent
that mode 2, the yawing mode is a participant, and the beat frequency provides the
means to determine the other participating mode, mode 3. Modes 2 and 3 have
drastically different damping ratios. Mode 2 has a ratio of 0.02 and mode 3 has a
damping ratio of 0.35. This difference i8 evident in the peculiar profile of the
oscillation envelope. Upon completion of the shots, the response is transient and
returns to the original equilibrium position. The displacement FRF in the 2z

translation DOF will provide more evidence to support this analysis.
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Figure 5.10. Firing barrel time response in the y direction.
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The y response is the most important with respect to dispersion. The barrel
length determines that a three millimeter barrel deflection in the vertical direction
would account for an aim-point error of 1.6 mradians of angular dispersion. The
resulting forced response causes the muzzle tip to displace positively in the y
direction. The reason the barrel tip establishes a positive y equilibrium value is
due to the eccentricities of the firing barrel, the gun mountings, and the gun’s CG.
The gun’s mountings are in a plane that is below the gun’s vertical CG. The
barrels act in a plane above the gun’s vertical CG. The result is that the excitation
force causes a moment about a horizontal axis through the CG, and the barrel tip
pitches upward. The steady-state response establishes an equilibrium position at
about 3 mm displacement. This creates an aim-point error that is consistent with

a dispersion value of approximately 1.6 or 1.7 mradians.

Inspection of Figure 5.10 indicates the presence of two modes, but there is no
pronounced beat frequency. Review of the lowest order modes indicate that mode
4, the pitching mode, at 16.0 Hz, is the logical participant. Animation of mode 4
depicts the behavior that is consistent with the response described above.
However, the second mode that is participating is not so obvious. The FRF is
needed to completely understand the response.

E. FREQUENCY RESPONSE

The results of the time response curves are valuable and insightful. However,
in order to gain a more significant understanding of the gun dynamics, the results
of the frequency response must be studied. The frequency response function (FRF),
or transfer function, can be defined for any node at any of its defined DOF, for an
excitation applied at any node in any defined DOF. The output is a plot of
normalized displacement versus linear frequency. The displacement is normalized
per unit excitation. The peaks in the plot coincide with the natural frequencies of
retained modes that are participating in the particular DOF’s response. The
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sharpness of these peaks is a function of the amount of damping for that particular
mode. The peak amplitude provides a relative measure of the amount that an
individual mode is participating in the response. The frequency response is able to
quantify and confirm the participation of the mode shapes in a particular response.

Reviewing the mode shapes from Chapter IV, there are only five retained
modes under 100 Hz. Of these five modes, review of their mode shapes reveals
that only modes 2, 3, and 4 have barrel tip displacements. Therefore, it is sensible
that only these three modes, or combinations of these modes, are evident in the

displacement FRF's of the barrel tip displacements.

An important part of a FRF is the associated phase plot. The phase plot
represents the phase difference between the excitation force and the response. The
significant characteristics of the phase plot are discussed above in Section C. It is
important to recognize that a response at a natural frequency corresponds to a
phase shift of 90 degrees at resonance and 180 degrees through resonance. Phase
relationships between the response and excitation provide insight into
understanding system dynamics. Phasing problems can contribute to undesirable

responses.

In the discussion above, it was mentioned that the x translation of the gun
could be attributed to mode 3, or the recoil mode, and possibly mode 2, the yawing
mode. For an excitation applied at the breech of the firing barrel, the FRF of the
firing barrel tip in the x direction provides a frequency spectrum of the response.
The frequency spectrum can be used to interpret which retained modes are
participating in the response.

Figure 5.11 is the displacement FRF of the firing barrel tip in the x direction.
The fact that there is a large peak at 15 Hz, indicates that mode 3 at 15.46 Hz is
present. A smaller peak at 14.4 Hz indicates that modes 2 and 3 are participating
in the response. Mode 3 is the recoil mode of the gun and mode 2 is the pitching
mode of the gun. Mode 3 with a large amplitude peak is contributing significantly
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more than mode 2. The width of the two peaks indicates the differences in their
respective damping values. Mode 2 has a damping ratio of 0.02 and mode 3 has a
damping ratio of 0.35. These results confirm the observations from the time

response.
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Figure 5.11. Frequency response of the firing barrel tip in the x direction.

In the previous chapter, a multi-degree-of-freedom system was analyzed.
Systems with multi-degrees-of-freedom are likely to have coupling of vibrations.
Modes are considered to be tightly coupled, if the coupling term is large. In
general, the highest natural frequency is increased and the lowest is decreased
(Ref. 44). The result is a pair of widely separated natural frequencies. For loosely
coupled modes, the converse is true. The two modes do not effect each other. In a
sense, they vibrate independently. Figure 5.12 shows two systems: one that is
tightly coupled, the other loosely coupled (Ref. 46). Modes 2 and 3 are considered
loosely coupled.

Figure 5.13 is the displacement FRF of the firing barrel tip in the z direction.
There is a large peak at 14 Hz indicating that mode 2 at 14.4 Hz, is participating.
A smaller peak at 15.4 Hz indicates that modes 2 and 3 are participating in this

response. It is sensible that mode 2, the yawing mode, is the main contributor.

120




TIGHT COUPLING

LOOSE COUPLING

Figure 5.12. Systems with tightly coupled and loosely ccn)yied modes.
The spacing of the peaks also indicates that the two modes are loosely coupled.
The sharpness of the peaks are also significantly different, indicating their differing
damping ratios. The z response is comprised of combinations of modes 2 and 3, the
same as the x response. However, the relative contributions of the two modes are
opposite.
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Figure 5.13. Frequency response of the firing barrel tip in the z direction.
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Figure 5.14 is the displacement FRF of the firing barrel tip in the y direction.
The fact that there is a peak at 16 Hz indicates that mode 4 at 16.0 Hz is
participating in this response. Mode 4 is the pitching mode of the gun. The FRF
does not reveal the participation of two modes. However, the time response
indicates two mode participation. This will require further investigation. With
more distinctive damping values, the participation of modes may become more
- distinct.
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Figure 5.14. Frequency response of the firing barrel tip in the y direction.

The results of the FRF's provide an understanding of the modes of vibration
involved in the dynamic response of the gun and the phasing of these modes with
respect to the excitation force. Understanding these modes allows undesirable
effects of the gun’s dynamics to be controlled, eliminated, or reduced. There are
certain characteristics of the gun’s components that determine these mode shapes
and natural frequencies. The damping of these modes determines the phasing of
the response and excitation force. Damping is a function of the structure’s
material and the method used to assemble the components. Using this valuable

information assists the FE engineer in making design decisions, to cancel or reduce
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the participation of certain modes in a response. This will allow timely and

efficient redesign or system modification.
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VI. FUTURE WORK

A. MUZZLE RESTRAINT

A proposed solution for improving the excessive dispersion of PHALANX uses
a muzzle restraint. Hughe’s Missile has developed three different prototype muzzle
restraints. The premise of the design is to restrict the motion of the end of the
six-barrel system. One of the prototypes is shown in Figure 6.1 (Ref. 47). All
designs incorporate a lightweight support structure and roller bearing. The
differences between the three designs are primarily in the types and installations
of roller bearings used. The restraint has a three point attachment to the
PHALANX mounting box or isogrid and a fourth to the end of the six-barrels by
means of a roller bearing. The roller bearing allows normal rotation of the six-

barrel system as well as the recoil translation in the longitudinal direction.

—- Fwd Barrel
\ Bearing : § Sj\

7>

Barre! Cluster N ‘
Sleeve

Truss Structure
for Strength

Figure 6.1. Muzzle restraint.
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With a restraint, it is observed that the bursts with the largest dispersion
values of 1.9 - 2.0 mradians do not occur, but the moderate dispersion values are
still possible.

The restraint as well as the gun’s isogrid should be included in the current
model. It is also important to do a complete dynamic analysis of the restraint,

.including the development of FRF's. This will ensure that any possible resonance

excitation between the gun and the restraint will be identified. The analysis
should also include an investigation into the optimal placement of the muzzle
restraint. Perhaps the restraint may do well at the mid-barrel point. Location of
the restraint should be optimized with respect to limiting barrel tip displacement.

B. IMPROVEMENTS TO THE MODEL

The FEM process is itself a dynamic process. Successive analyses continually
provide insight into future model improvements. The latest analysis has provided
valuable insight into reducing the number of model DOF, and replacing particular
elements with those that have better kinematic and elastic behavior. The following
recommendations enhance the dynamic analysis of the current model, and also
significantly reduce the number of DOF.

(1) Replace the muzzle clamp with a combination of a lumped mass element and
rigid elements for support. A lumped mass element is created at a single
node. It is used to represent the mass and inertia properties of a component
that may not be an active participant in a model’s dynamics; the component’s
mass, inertial and stiffness properties are its only contribution to the system
response. The lumped mass element is simply created by choosing a node
that is consistent with a specific component’s CG. The component’s mass and

inertial properties are entered in the lumped mass physical property table.

The muzzle clamp can be replaced by a single lumped mass element located at its

CG, and two rigid elements to provide a means to intra-connect the six-barrels as
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Figure 6.2. Schematic of proposed six-barrel assembly with modified muzzle

and mid-barrel clamps.

shown in Figure 6.2. This modification will represent the boundary conditions

imposed by the muzzle clamp and also contribute the same kinematic elastic
behavior to the six-barrel system. The benefit is a significant reduction in the
number of DOF.

(2)

(3)

The same approach as discussed in (1) can be used for the mid-barrel clamp
as shown in Figure 6.2. A lumped mass with the same mass and inertia
properties as the mid-barrel clamp located at its CG, and a single rigid
element to intra-connect all six barrels and the lumped mass. Again the
benefit is a reduction in the number of DOF.

Improve the interface of the double axial roller bearing and the housing. This
interface i8 crucial in understanding the dynamics of the model. It is the
critical load path of the firing rounds to the recoil adapters. In order to
capture the dynamic effects of the bearing race / housing interface, it is

recommended that the solid bricks in bearing races be replaced with beam

-elements. Using I-DEAS BEAM SECTION modeling, the exact profile of the

bearing race can be modeled. It is understood that beam elements represent
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(4)

(5)

(6)

bending behavior better than solid brick elements. In conjunction, the
housing should be modeled as a continuum of shell elements, rather than a
direct interface of shell elements with solid elements. The use of beam
elements in the bearing races is conducive to achieving the latter modeling
goal. Also, more detail of the housing should be incorporated. The housing is
a support structure between the recoil adapters and the angular contact
bearing. It is an important component in the load path. Rather than treat
the housing as a simple cylinder, there should be an effort to capture the

actual features of the housing.

The rotor can also be simplified using a lumped mass and rigid elements.
However, only a portion of the rotor should be modified. It is important to
preserve the elastic and kinematic behavior between the axial roller bearing
and the rotor, as well as the needle bearing and the rotor. Therefore, only a
mid-section of the rotor should be replaced with an appropriately positioned
lumped mass and two rigid elements. This will serve to eliminate elements
that are not directly involved with the dynamics, but still allow enough of the
rotor to remain intact to preserve the interface with the bearings. The benefit

here is also a reduction in DOF.

The recoil adapter’s support structure should be eliminated and replaced with
two rigid elements. The rigid elements will serve to model the attachment
between the gun housing and the recoil adapter. It is important to emphasize
that the lateral offset distance of the recoil adapters from the housing must
be preserved. The recoil adapter’s line-of-action is important in the dynamic
analysis. Lumped mass could also be created at the node interconnecting the
node-to-node translational springs and rigid elements.

The node-to-node translational springs that are critical elements in the ball
joint, double angular contact bearing, and recoil adapters should be

reoriented. Currently these springs exist between two non-coincident nodes
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that are spaced to reflect the actual geometry of these components. Depending
on the load condition, a stiffness in any direction other than the line joining
the two nodes may create a moment load on the springs. This is unrealistic
for the actual components. This is a scenario unique to these components,
because of the modeling method used. For example, in the bearings springs
are used to represent the ball bearings. In the actual bearing, the ball
bearings’ dimensions are specified as is the spacing between the inner and
outer races of the bearing. The decision was made to preserve the spacing
between the races, but allow the springs, representing ball bearings, to span
this space to connect the races. Currently, a dynamic analysis cannot be done
in I-DEAS with gaps or spaces between components. In order to retain the
appropriate geometry of these components and prevent moment loading of the
springs, rigid elements can be used in conjunction with coincident nodes. Two
coincident nodes should be created at a mid-point distance between the
springs. Again using the contact bearing as an example, two coincident nodes
should be created at a point mid-way between the inner and outer races.
Each of these nodes will be connected to one of the former attachment points
on the two bearing races using rigid elements. The spring element will be
created between the two coincident nodes. This retains the correct component
geometry and removes the possibility of undesirable moments about the

spring.

C. MODEL VALIDATION

Upon completion of the above recommendations, the next essential step is

model validation / correlation and determination of modal damping values. The

correlation of analytical and experimental modal analysis provides a valuable

method to uncover modeling errors. It can also detect inaccuracies in the

connections between subcomponents or boundary conditions. An M61A1 Gatling
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gun that has reached the end of its service life is currently on loan to the Naval
Postgraduate School. Using this gun, extensive modal analysis should be
performed. The testing should be conducted on the component level as well as
various subassembﬁes, like the barrel cluster. This will provide insight into the
vital characteristics of the components and their impact on gun dynamics. A
thorough understanding of the various interactions is essential to a complete
understanding of the system. It will aid in determining the coupled motion
between components at different natural frequencies, and also potential phasing
problems between components. The ultimate result of the correlation is to arrive
at a validated model. A validated model can be used as a powerful analysis tool to
make confident future design modifications.

D. ROTATIONAL EFFECTS

The modifications in Section B should be followed with the introduction of the
gun rotational effects into the current model. I-DEAS SYSTEM DYNAMIC
ANALYSIS provides the tools to include gyroscopic effects into the model.

I-DEAS offers a rotational matrix connector. The elements of the matrix
connector define individual values for rotational DOF in the mass/inertia, damping
and stiffness matrices. The terms used to represent the gyroscopic effects of the
rotating assembly are entered in the viscous damping matrix. Connectors
represent the dynamic properties of elements without geometry definition. The
values of the matrix connector are dependent on a specific rotational speed.
Therefore, a new matrix connector must be created for each rotational speed.
Matrix connectors for a range of various rotational speeds should be developed.
The speeds should represent the rotational speeds as the gun ramps up to
operational speed, and through the theoretical maximum rotation rate of 1000
RPM.
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E. ANALYTICAL MODEL

An analytical model is in development as part of a synergistic analysis effort.
The use of the two analyses to determine the dynamic characteristics of the system
will be more accurate than if they were studied separately. The analytical model
will complement the computer analysis, specifically with respect to the rotational
effects.

F. GYROSCOPIC WHIRL

Gyroscopic whirl is a mechanism of self-excited vibration that begins to
vibrate on its own. The energy supplying the vibrations is provided by a
mechanism in the system causing oscillating forces. This alternating force is
created by the motion of the system itself; when the motion stops, the oscillating
force disappears. This is in contrast to a forced vibration where the sustaining
force exists independent of the motion. (Ref. 48)

Self-excited vibrations are characterized by the presence of a mechanism that
will cause the system to vibrate at its own natural frequency, independent of an
outside force. The motion is described by the homogeneous solution to the equation

of motion. Self-excited vibration pervades rotating mechanical systems (Ref. 49).

Figure 6.3 ( Ref. 50) shows the schematic of a typical system susceptible to
gyroscopic effects. The springs to ground represent the gun’s combined bearing
stiffnesses, Q is the rotational speed of the six-barrel system and I, is the
rotational inertia of the gun’s rotating assembly. In the drawing below, ®
represents the angular velocity of whirl of the shaft centerline and T}, is the torque
about O for ¢ =1 radian. When a shaft that spins about its longitudinal axis
bends about that axis, the bent shaft will whirl about its original axis of rotation.
In addition, the shaft will also continue to rotate about its bent longitudinal axis.
This effect can be caused by loose or worn bearings, or an imbalance in the system.

The disc attached to the end of an overhung beam will not whirl in its own plane.
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Figure 6.3. A system susceptible to whirl

This is due to the fact that the centrifugal forces of the various particles of the disk
do not lie in one plane. Consider the machine to be completely balanced and
whirling at its critical speed in a slightly deflected position. The angular velocity of
the whirl of the center of the shaft is assumed to be the same as the angular
velocity of rotation of the shaft. This implies that a particular point on the disk
which is outside will always be outside; the shaft fibers in tension remain in
tension and those in compression remain in compression. Thus, any point on the
disk moves in a circle in a plane perpendicular to the undistorted line of the shaft.
Whirl can occur at frequencies greater than or less than the frequency of rotation.
(Ref. 51)

Note the dispersion pattern shown in Figure 6.4 (Ref. '52). The geometric
centers of the six individual barrels’ aim point errors are denoted with a circle and
the respective barrel number. The displacement of the six barrels is consistent
with a whirl pattern. From the discussion of whirl, the gun has three distinct
characteristics that could initiate or support whirl. First of all, the gun is a
rotating system. Secondly, the bearings are not preloaded and may pot have
sufficient stiffness to support the high rotation rate and large forces of the firing
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Figure 6.4. Two dimensional dispersion pattern.
cycle. Finally, imbalances pervade the gun system during operation. There is an
imbalance created by the firing of the gun. The firing sequence starts 12.5 degrees
prior to TDC. Since only one barrel fires at a time, there is an imbalance which
may be the mechanism for the onset of whirl. Also, the force of a single shot is a
following force. As the gun rotates from the point where the firing is initiated to
the point where the bullet leaves the barrel, the magnitude and direction of the
force is changing with both position and time. The manufacturing tolerances of the
barrels allow for a variation between the masses of barrels of up to 0.3 kg out of 8
kg. Although the resulting imbalance is slight, it may be sufficient to initiate
whirl. The gun’s rotation rate is also a source of imbalance. The rotation rate of
the gun can have up to a £ 50 RPM variation. This is only about ten percent of the
gun’s lowest firing rate, but it may provide the necessary instability to initiate
whirl The premise of this thesis has been to explore all sensitivities of the six-
barrel system to displacements. Therefore, the concept of whirl and all possible

contributions must be investigated and understood.
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G. BEARINGS

During the model’s development stage, a large amount of effort was spent on
the gun's two bearings. There was not a lot of available information regarding
design specifications and bearing design life. It was surprising to find that both
bearings were catalogue bearings from both of their respective companies. While
investigating stiffness parameters for the bearings, the manufacturers required
that the bearing’s operational load and geometry be defined. Both bearings were at
the upper values for their respective operational loading. There was also a specific
concern for the taper of the needle bearing’s axle. It was too excessive. These
parameters should be revisited. Perhaps alternate bearings could be substituted
into the model and their behavior evaluated. The contribution of the bearings to
the displacement of the six-barrel] system must be explored further. Bearings are
sensitive components with respect to whirl and provide the critical path for
coupling gyroscopic effects. The addition of more massive barrels may prove to be
futile in solving the dispersion problem.

[ =
|

Figure 6.5 Cover plate deformation.

Review of the first nine mode shapes in Chapter IV shows significant
deformation of the cover plate and needle bearing axle. This is shown in Figure
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6.5. Possible design modifications or stiffening of theses components should be
investigated.

H. DISPERSION PATTERN FREQUENCY SPECTRUM

Figure 6.6 is the FFT of the horizontal position as a function of time for a
dispersion firing. Figure 6.7 is the same except for the vertical component (Ref.
53). It may be possible that the frequencies in this spectrum are correlated to
natural frequencies in the gun’s displacement response. It makes sense that a
significant contribution would be at the gun’s rotational raté of around 10 Hz, as
seen in both figures. It is also interesting to note that in both figures there is a
significant contribution of a low frequency component around 5 Hz. This is a
possible contribution from a whirl frequency. No attempt will be made to draw
conclusions from these plots since the initial conditions and raw data are not
available. However, a similar analysis should be pursued. It may provide a
valuable means of correlating analytical and empirical data as well as giving

insight into gun dynamics.
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Figure 6.6 FFT of dispersion pattern in the horizontal direction.
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Figure 6.7 FFT of dispersion pattern in the vertical direction.
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VII. CONCLUSIONS

In an effort to meet the increasing threat and improve the PHALANX
dispersion, an optimized barrel design is underway with the possibility of a faster,
enhanced-lethality round. The effort is focused on designing a significantly larger
barrel that will accommodate the proposed round. These design modifications
carry with them a host of system impact considerations. The finite element
analysis is conducive to system impact studies. It provides engineers with timely
and inexpensive evaluations. The use of finite element FE analysis is essential in
the future design of all systems. The end costs of today’s high tech projects are too
great. Defense budgets no longer provide for projects with high financial risk. The
FE method does not replace traditional engineering practices, nor does it preclude
the building of prototypes. It does provide a timely analysis to assist in the early
stages of design, and can highlight potential future shortcomings in the design.

The finite element analysis has provided valuable insight into aim point errors
and their contribution to dispersion. Understanding the modes of vibration and
the specific components that identify them can assist in eliminating undesirable

responses.

This thesis has uncovered a potential significant contribution to dispersion:
the double angular contact bearing. Also, the concept of gyroscopic whirl has been
highlighted as a potential contributor to dispersion. The conclusions of the thesis
have corroborated many years worth of observed data. The barrel tip response
plots, in the y and z directions, shown in Figures 5.10 and 5.11, reveal that the
displacements for the two directions are unequal. This leads to the conclusion that
a two dimensional dispersion pattern is actually elliptical. This has always been
the observed pattern. However, dispersion has always been defined in terms of the
radius of a circle as shown in Figure 7.1 (Ref. 54).
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Figure 7.1 Dispersion ellipse.

High-speed, low radar cross-section, sea-skimming missiles are a huge threat
to the U.S. Navy surface fleet. With the future emphasis of the navy’s involvement
in littoral warfare, a short range surprise launch from shore could devastate a
ship. A close-in-weapon system may be called upon to serve as the outer layer as
well as the inner layer of defense. With advancing technologies, anti-ship missiles
are becoming smaller and faster and in a word, more lethal. Defensive weapons
must be able to defend against this increased threat. The survivability of a one
billion dollar cruiser and the lives of its crew are dependent upon the effectiveness
of the PHALANX The dispersion problem of the PHALANX must be understood
and corrected.
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APPENDIX A. MISSILE DEBRIS COMPUTER PROGRAM

A listing of the computer program in C follows.
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APPENDIX B. GUN MODEL MODE SHAPES

The following are line drawings of the deformed model mode shapes. All are

side views, in ascending order by frequency.
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